mirror of https://github.com/explosion/spaCy.git
112 lines
4.5 KiB
Python
112 lines
4.5 KiB
Python
|
from typing import Optional, Dict, Any, Tuple, Union, Callable, List
|
||
|
import logging
|
||
|
import srsly
|
||
|
from pathlib import Path
|
||
|
from wasabi import msg
|
||
|
import typer
|
||
|
from thinc.api import Config, fix_random_seed
|
||
|
|
||
|
from .train import create_before_to_disk_callback
|
||
|
from .. import util
|
||
|
from ..util import registry
|
||
|
from ..schemas import ConfigSchemaTraining
|
||
|
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
|
||
|
from ._util import import_code, get_sourced_components
|
||
|
from ..util import resolve_dot_names
|
||
|
|
||
|
|
||
|
@init_cli.command(
|
||
|
"pipeline",
|
||
|
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
||
|
)
|
||
|
def init_pipeline_cli(
|
||
|
# fmt: off
|
||
|
ctx: typer.Context, # This is only used to read additional arguments
|
||
|
config_path: Path = Arg(..., help="Path to config file", exists=True),
|
||
|
output_path: Path = Arg(..., help="Output directory for the prepared data"),
|
||
|
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
||
|
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
||
|
# fmt: on
|
||
|
):
|
||
|
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
|
||
|
overrides = parse_config_overrides(ctx.args)
|
||
|
import_code(code_path)
|
||
|
config = util.load_config(config_path, overrides=overrides)
|
||
|
with show_validation_error(config_path):
|
||
|
nlp = init_pipeline(config)
|
||
|
nlp.to_disk(output_path)
|
||
|
|
||
|
|
||
|
def must_initialize(init_path: Path, config_path: Path, overrides: Dict) -> bool:
|
||
|
config = util.load_config(config_path, overrides=overrides)
|
||
|
if not init_path.exists():
|
||
|
return True
|
||
|
elif not (init_path / "config.cfg").exists():
|
||
|
return True
|
||
|
else:
|
||
|
init_cfg = util.load_config(init_path / "config.cfg", interpolate=True)
|
||
|
if config.to_str() != init_cfg.to_str():
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def init_pipeline(config: Config, use_gpu=-1):
|
||
|
raw_config = config
|
||
|
config = raw_config.interpolate()
|
||
|
if config["training"]["seed"] is not None:
|
||
|
fix_random_seed(config["training"]["seed"])
|
||
|
allocator = config["training"]["gpu_allocator"]
|
||
|
if use_gpu >= 0 and allocator:
|
||
|
set_gpu_allocator(allocator)
|
||
|
# Use original config here before it's resolved to functions
|
||
|
sourced_components = get_sourced_components(config)
|
||
|
nlp = util.load_model_from_config(raw_config)
|
||
|
# Resolve all training-relevant sections using the filled nlp config
|
||
|
T = registry.resolve(
|
||
|
config["training"],
|
||
|
schema=ConfigSchemaTraining,
|
||
|
validate=True,
|
||
|
)
|
||
|
dot_names = [T["train_corpus"], T["dev_corpus"], T["raw_text"]]
|
||
|
train_corpus, dev_corpus, raw_text = resolve_dot_names(config, dot_names)
|
||
|
util.load_vocab_data_into_model(nlp, lookups=T["lookups"])
|
||
|
if T["vectors"] is not None:
|
||
|
add_vectors(nlp, T["vectors"])
|
||
|
score_weights = T["score_weights"]
|
||
|
optimizer = T["optimizer"]
|
||
|
batcher = T["batcher"]
|
||
|
train_logger = T["logger"]
|
||
|
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
|
||
|
# Components that shouldn't be updated during training
|
||
|
frozen_components = T["frozen_components"]
|
||
|
# Sourced components that require resume_training
|
||
|
resume_components = [p for p in sourced_components if p not in frozen_components]
|
||
|
msg.info(f"Pipeline: {nlp.pipe_names}")
|
||
|
if resume_components:
|
||
|
with nlp.select_pipes(enable=resume_components):
|
||
|
msg.info(f"Resuming training for: {resume_components}")
|
||
|
nlp.resume_training(sgd=optimizer)
|
||
|
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||
|
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
||
|
# Verify the config after calling 'begin_training' to ensure labels
|
||
|
# are properly initialized
|
||
|
verify_config(nlp)
|
||
|
|
||
|
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
|
||
|
if weights_data is not None:
|
||
|
tok2vec_component = C["pretraining"]["component"]
|
||
|
if tok2vec_component is None:
|
||
|
msg.fail(
|
||
|
f"To use pretrained tok2vec weights, [pretraining.component] "
|
||
|
f"needs to specify the component that should load them.",
|
||
|
exits=1,
|
||
|
)
|
||
|
layer = nlp.get_pipe(tok2vec_component).model
|
||
|
tok2vec_layer = C["pretraining"]["layer"]
|
||
|
if tok2vec_layer:
|
||
|
layer = layer.get_ref(tok2vec_layer)
|
||
|
layer.from_bytes(weights_data)
|
||
|
msg.info(f"Loaded pretrained weights into component '{tok2vec_component}'")
|
||
|
return nlp
|