spaCy/spacy/cli/init_pipeline.py

112 lines
4.5 KiB
Python
Raw Normal View History

2020-09-28 07:47:34 +00:00
from typing import Optional, Dict, Any, Tuple, Union, Callable, List
import logging
import srsly
from pathlib import Path
from wasabi import msg
import typer
from thinc.api import Config, fix_random_seed
from .train import create_before_to_disk_callback
from .. import util
from ..util import registry
from ..schemas import ConfigSchemaTraining
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, get_sourced_components
from ..util import resolve_dot_names
@init_cli.command(
"pipeline",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def init_pipeline_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Path = Arg(..., help="Output directory for the prepared data"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
# fmt: on
):
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
config = util.load_config(config_path, overrides=overrides)
with show_validation_error(config_path):
nlp = init_pipeline(config)
nlp.to_disk(output_path)
def must_initialize(init_path: Path, config_path: Path, overrides: Dict) -> bool:
config = util.load_config(config_path, overrides=overrides)
if not init_path.exists():
return True
elif not (init_path / "config.cfg").exists():
return True
else:
init_cfg = util.load_config(init_path / "config.cfg", interpolate=True)
if config.to_str() != init_cfg.to_str():
return True
else:
return False
def init_pipeline(config: Config, use_gpu=-1):
raw_config = config
config = raw_config.interpolate()
if config["training"]["seed"] is not None:
fix_random_seed(config["training"]["seed"])
allocator = config["training"]["gpu_allocator"]
if use_gpu >= 0 and allocator:
set_gpu_allocator(allocator)
# Use original config here before it's resolved to functions
sourced_components = get_sourced_components(config)
nlp = util.load_model_from_config(raw_config)
# Resolve all training-relevant sections using the filled nlp config
T = registry.resolve(
config["training"],
schema=ConfigSchemaTraining,
validate=True,
)
dot_names = [T["train_corpus"], T["dev_corpus"], T["raw_text"]]
train_corpus, dev_corpus, raw_text = resolve_dot_names(config, dot_names)
util.load_vocab_data_into_model(nlp, lookups=T["lookups"])
if T["vectors"] is not None:
add_vectors(nlp, T["vectors"])
score_weights = T["score_weights"]
optimizer = T["optimizer"]
batcher = T["batcher"]
train_logger = T["logger"]
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
# Components that shouldn't be updated during training
frozen_components = T["frozen_components"]
# Sourced components that require resume_training
resume_components = [p for p in sourced_components if p not in frozen_components]
msg.info(f"Pipeline: {nlp.pipe_names}")
if resume_components:
with nlp.select_pipes(enable=resume_components):
msg.info(f"Resuming training for: {resume_components}")
nlp.resume_training(sgd=optimizer)
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
# Verify the config after calling 'begin_training' to ensure labels
# are properly initialized
verify_config(nlp)
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
if weights_data is not None:
tok2vec_component = C["pretraining"]["component"]
if tok2vec_component is None:
msg.fail(
f"To use pretrained tok2vec weights, [pretraining.component] "
f"needs to specify the component that should load them.",
exits=1,
)
layer = nlp.get_pipe(tok2vec_component).model
tok2vec_layer = C["pretraining"]["layer"]
if tok2vec_layer:
layer = layer.get_ref(tok2vec_layer)
layer.from_bytes(weights_data)
msg.info(f"Loaded pretrained weights into component '{tok2vec_component}'")
return nlp