spaCy/spacy/tests/doc/test_span.py

743 lines
25 KiB
Python
Raw Normal View History

import numpy
import pytest
from numpy.testing import assert_array_equal
from thinc.api import get_current_ops
from spacy.attrs import LENGTH, ORTH
from spacy.lang.en import English
from spacy.tokens import Doc, Span, Token
2019-05-08 00:33:40 +00:00
from spacy.util import filter_spans
from spacy.vocab import Vocab
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
2021-09-20 18:22:49 +00:00
from ..util import add_vecs_to_vocab
from .test_underscore import clean_underscore # noqa: F401
2015-04-07 02:52:25 +00:00
@pytest.fixture
def doc(en_tokenizer):
# fmt: off
text = "This is a sentence. This is another sentence. And a third."
2020-09-21 18:43:54 +00:00
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12]
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
"attr", "punct", "ROOT", "det", "npadvmod", "punct"]
ents = ["O", "O", "B-ENT", "I-ENT", "I-ENT", "I-ENT", "I-ENT", "O", "O",
"O", "O", "O", "O", "O"]
# fmt: on
tokens = en_tokenizer(text)
lemmas = [t.text for t in tokens] # this is not correct, just a placeholder
spaces = [bool(t.whitespace_) for t in tokens]
return Doc(
tokens.vocab,
words=[t.text for t in tokens],
spaces=spaces,
heads=heads,
deps=deps,
ents=ents,
lemmas=lemmas,
)
2015-04-07 02:52:25 +00:00
@pytest.fixture
def doc_not_parsed(en_tokenizer):
text = "This is a sentence. This is another sentence. And a third."
tokens = en_tokenizer(text)
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
doc = Doc(tokens.vocab, words=[t.text for t in tokens])
return doc
@pytest.mark.issue(1537)
def test_issue1537():
"""Test that Span.as_doc() doesn't segfault."""
string = "The sky is blue . The man is pink . The dog is purple ."
doc = Doc(Vocab(), words=string.split())
doc[0].sent_start = True
for word in doc[1:]:
if word.nbor(-1).text == ".":
word.sent_start = True
else:
word.sent_start = False
sents = list(doc.sents)
sent0 = sents[0].as_doc()
sent1 = sents[1].as_doc()
assert isinstance(sent0, Doc)
assert isinstance(sent1, Doc)
@pytest.mark.issue(1612)
def test_issue1612(en_tokenizer):
"""Test that span.orth_ is identical to span.text"""
doc = en_tokenizer("The black cat purrs.")
span = doc[1:3]
assert span.orth_ == span.text
@pytest.mark.issue(3199)
def test_issue3199():
"""Test that Span.noun_chunks works correctly if no noun chunks iterator
is available. To make this test future-proof, we're constructing a Doc
with a new Vocab here and a parse tree to make sure the noun chunks run.
"""
words = ["This", "is", "a", "sentence"]
doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
with pytest.raises(NotImplementedError):
list(doc[0:3].noun_chunks)
@pytest.mark.issue(5152)
def test_issue5152():
# Test that the comparison between a Span and a Token, goes well
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
nlp = English()
text = nlp("Talk about being boring!")
text_var = nlp("Talk of being boring!")
y = nlp("Let")
span = text[0:3] # Talk about being
span_2 = text[0:3] # Talk about being
span_3 = text_var[0:3] # Talk of being
token = y[0] # Let
with pytest.warns(UserWarning):
assert span.similarity(token) == 0.0
assert span.similarity(span_2) == 1.0
with pytest.warns(UserWarning):
assert span_2.similarity(span_3) < 1.0
@pytest.mark.issue(6755)
def test_issue6755(en_tokenizer):
doc = en_tokenizer("This is a magnificent sentence.")
span = doc[:0]
assert span.text_with_ws == ""
assert span.text == ""
@pytest.mark.parametrize(
"sentence, start_idx,end_idx,label",
[("Welcome to Mumbai, my friend", 11, 17, "GPE")],
)
@pytest.mark.issue(6815)
def test_issue6815_1(sentence, start_idx, end_idx, label):
nlp = English()
doc = nlp(sentence)
span = doc[:].char_span(start_idx, end_idx, label=label)
assert span.label_ == label
@pytest.mark.parametrize(
"sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
)
@pytest.mark.issue(6815)
def test_issue6815_2(sentence, start_idx, end_idx, kb_id):
nlp = English()
doc = nlp(sentence)
span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
assert span.kb_id == kb_id
@pytest.mark.parametrize(
"sentence, start_idx,end_idx,vector",
[("Welcome to Mumbai, my friend", 11, 17, numpy.array([0.1, 0.2, 0.3]))],
)
@pytest.mark.issue(6815)
def test_issue6815_3(sentence, start_idx, end_idx, vector):
nlp = English()
doc = nlp(sentence)
span = doc[:].char_span(start_idx, end_idx, vector=vector)
assert (span.vector == vector).all()
2019-12-13 14:54:58 +00:00
@pytest.mark.parametrize(
"i_sent,i,j,text",
[
(0, 0, len("This is a"), "This is a"),
(1, 0, len("This is another"), "This is another"),
(2, len("And "), len("And ") + len("a third"), "a third"),
(0, 1, 2, None),
],
)
def test_char_span(doc, i_sent, i, j, text):
sents = list(doc.sents)
span = sents[i_sent].char_span(i, j)
if not text:
assert not span
else:
assert span.text == text
def test_char_span_attributes(doc):
label = "LABEL"
kb_id = "KB_ID"
span_id = "SPAN_ID"
span1 = doc.char_span(20, 45, label=label, kb_id=kb_id, span_id=span_id)
span2 = doc[1:].char_span(15, 40, label=label, kb_id=kb_id, span_id=span_id)
assert span1.text == span2.text
assert span1.label_ == span2.label_ == label
assert span1.kb_id_ == span2.kb_id_ == kb_id
assert span1.id_ == span2.id_ == span_id
def test_spans_sent_spans(doc):
2015-04-07 02:52:25 +00:00
sents = list(doc.sents)
assert sents[0].start == 0
assert sents[0].end == 5
assert len(sents) == 3
assert sum(len(sent) for sent in sents) == len(doc)
2015-07-09 15:30:58 +00:00
def test_spans_root(doc):
span = doc[2:4]
assert len(span) == 2
assert span.text == "a sentence"
assert span.root.text == "sentence"
assert span.root.head.text == "is"
2016-01-16 15:19:09 +00:00
2017-03-11 00:50:02 +00:00
def test_spans_string_fn(doc):
span = doc[0:4]
assert len(span) == 4
assert span.text == "This is a sentence"
2016-01-16 15:19:09 +00:00
def test_spans_root2(en_tokenizer):
text = "through North and South Carolina"
2020-09-21 18:43:54 +00:00
heads = [0, 4, 1, 1, 0]
deps = ["dep"] * len(heads)
tokens = en_tokenizer(text)
2020-09-21 18:43:54 +00:00
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
assert doc[-2:].root.text == "Carolina"
def test_spans_span_sent(doc, doc_not_parsed):
"""Test span.sent property"""
assert len(list(doc.sents))
assert doc[:2].sent.root.text == "is"
assert doc[:2].sent.text == "This is a sentence."
assert doc[6:7].sent.root.left_edge.text == "This"
assert doc[0 : len(doc)].sent == list(doc.sents)[0]
assert list(doc[0 : len(doc)].sents) == list(doc.sents)
with pytest.raises(ValueError):
doc_not_parsed[:2].sent
# test on manual sbd
doc_not_parsed[0].is_sent_start = True
doc_not_parsed[5].is_sent_start = True
assert doc_not_parsed[1:3].sent == doc_not_parsed[0:5]
assert doc_not_parsed[10:14].sent == doc_not_parsed[5:]
@pytest.mark.parametrize(
"start,end,expected_sentence",
[
(0, 14, "This is"), # Entire doc
(1, 4, "This is"), # Overlapping with 2 sentences
(0, 2, "This is"), # Beginning of the Doc. Full sentence
(0, 1, "This is"), # Beginning of the Doc. Part of a sentence
(10, 14, "And a"), # End of the Doc. Overlapping with 2 senteces
(12, 14, "third."), # End of the Doc. Full sentence
(1, 1, "This is"), # Empty Span
],
)
def test_spans_span_sent_user_hooks(doc, start, end, expected_sentence):
# Doc-level sents hook
def user_hook(doc):
return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
doc.user_hooks["sents"] = user_hook
# Make sure doc-level sents hook works
assert doc[start:end].sent.text == expected_sentence
# Span-level sent hook
doc.user_span_hooks["sent"] = lambda x: x
# Now, span=level sent hook overrides the doc-level sents hook
assert doc[start:end].sent == doc[start:end]
2017-10-20 18:28:00 +00:00
def test_spans_lca_matrix(en_tokenizer):
"""Test span's lca matrix generation"""
tokens = en_tokenizer("the lazy dog slept")
2020-09-21 18:43:54 +00:00
doc = Doc(
2020-09-21 08:59:07 +00:00
tokens.vocab,
words=[t.text for t in tokens],
2020-09-21 18:43:54 +00:00
heads=[2, 2, 3, 3],
2020-09-21 08:59:07 +00:00
deps=["dep"] * 4,
)
2017-10-20 18:28:00 +00:00
lca = doc[:2].get_lca_matrix()
assert lca.shape == (2, 2)
assert lca[0, 0] == 0 # the & the -> the
2019-02-07 19:54:07 +00:00
assert lca[0, 1] == -1 # the & lazy -> dog (out of span)
assert lca[1, 0] == -1 # lazy & the -> dog (out of span)
assert lca[1, 1] == 1 # lazy & lazy -> lazy
lca = doc[1:].get_lca_matrix()
assert lca.shape == (3, 3)
2019-02-07 19:54:07 +00:00
assert lca[0, 0] == 0 # lazy & lazy -> lazy
assert lca[0, 1] == 1 # lazy & dog -> dog
assert lca[0, 2] == 2 # lazy & slept -> slept
lca = doc[2:].get_lca_matrix()
assert lca.shape == (2, 2)
2019-02-07 19:54:07 +00:00
assert lca[0, 0] == 0 # dog & dog -> dog
assert lca[0, 1] == 1 # dog & slept -> slept
assert lca[1, 0] == 1 # slept & dog -> slept
assert lca[1, 1] == 1 # slept & slept -> slept
2017-10-20 18:28:00 +00:00
# example from Span API docs
tokens = en_tokenizer("I like New York in Autumn")
doc = Doc(
tokens.vocab,
words=[t.text for t in tokens],
heads=[1, 1, 3, 1, 3, 4],
deps=["dep"] * len(tokens),
)
lca = doc[1:4].get_lca_matrix()
assert_array_equal(lca, numpy.asarray([[0, 0, 0], [0, 1, 2], [0, 2, 2]]))
2017-10-20 18:28:00 +00:00
def test_span_similarity_match():
doc = Doc(Vocab(), words=["a", "b", "a", "b"])
span1 = doc[:2]
span2 = doc[2:]
2020-04-28 11:37:37 +00:00
with pytest.warns(UserWarning):
assert span1.similarity(span2) == 1.0
assert span1.similarity(doc) == 0.0
assert span1[:1].similarity(doc.vocab["a"]) == 1.0
def test_spans_default_sentiment(en_tokenizer):
"""Test span.sentiment property's default averaging behaviour"""
text = "good stuff bad stuff"
tokens = en_tokenizer(text)
tokens.vocab[tokens[0].text].sentiment = 3.0
tokens.vocab[tokens[2].text].sentiment = -2.0
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
doc = Doc(tokens.vocab, words=[t.text for t in tokens])
assert doc[:2].sentiment == 3.0 / 2
assert doc[-2:].sentiment == -2.0 / 2
assert doc[:-1].sentiment == (3.0 + -2) / 3.0
def test_spans_override_sentiment(en_tokenizer):
"""Test span.sentiment property's default averaging behaviour"""
text = "good stuff bad stuff"
tokens = en_tokenizer(text)
tokens.vocab[tokens[0].text].sentiment = 3.0
tokens.vocab[tokens[2].text].sentiment = -2.0
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
doc = Doc(tokens.vocab, words=[t.text for t in tokens])
doc.user_span_hooks["sentiment"] = lambda span: 10.0
assert doc[:2].sentiment == 10.0
assert doc[-2:].sentiment == 10.0
assert doc[:-1].sentiment == 10.0
2017-04-26 17:01:05 +00:00
def test_spans_are_hashable(en_tokenizer):
"""Test spans can be hashed."""
text = "good stuff bad stuff"
tokens = en_tokenizer(text)
span1 = tokens[:2]
span2 = tokens[2:4]
assert hash(span1) != hash(span2)
span3 = tokens[0:2]
assert hash(span3) == hash(span1)
2017-10-24 13:27:29 +00:00
2017-08-19 14:18:23 +00:00
def test_spans_by_character(doc):
span1 = doc[1:-2]
# default and specified alignment mode "strict"
span2 = doc.char_span(span1.start_char, span1.end_char, label="GPE")
2017-08-19 14:18:23 +00:00
assert span1.start_char == span2.start_char
assert span1.end_char == span2.end_char
assert span2.label_ == "GPE"
2017-08-19 14:24:38 +00:00
span2 = doc.char_span(
span1.start_char, span1.end_char, label="GPE", alignment_mode="strict"
)
assert span1.start_char == span2.start_char
assert span1.end_char == span2.end_char
assert span2.label_ == "GPE"
# alignment mode "contract"
span2 = doc.char_span(
span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract"
)
assert span1.start_char == span2.start_char
assert span1.end_char == span2.end_char
assert span2.label_ == "GPE"
# alignment mode "expand"
span2 = doc.char_span(
span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="expand"
)
assert span1.start_char == span2.start_char
assert span1.end_char == span2.end_char
assert span2.label_ == "GPE"
# unsupported alignment mode
with pytest.raises(ValueError):
span2 = doc.char_span(
span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="unk"
)
# Span.char_span + alignment mode "contract"
span2 = doc[0:2].char_span(
span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract"
)
assert span1.start_char == span2.start_char
assert span1.end_char == span2.end_char
assert span2.label_ == "GPE"
2017-08-19 14:24:38 +00:00
def test_span_to_array(doc):
span = doc[1:-2]
arr = span.to_array([ORTH, LENGTH])
assert arr.shape == (len(span), 2)
assert arr[0, 0] == span[0].orth
assert arr[0, 1] == len(span[0])
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
def test_span_as_doc(doc):
span = doc[4:10]
span_doc = span.as_doc()
assert span.text == span_doc.text.strip()
assert isinstance(span_doc, doc.__class__)
assert span_doc is not doc
assert span_doc[0].idx == 0
# partial initial entity is removed
assert len(span_doc.ents) == 0
# full entity is preserved
span_doc = doc[2:10].as_doc()
assert len(span_doc.ents) == 1
# partial final entity is removed
span_doc = doc[0:5].as_doc()
assert len(span_doc.ents) == 0
@pytest.mark.usefixtures("clean_underscore")
def test_span_as_doc_user_data(doc):
"""Test that the user_data can be preserved (but not by default)."""
my_key = "my_info"
my_value = 342
doc.user_data[my_key] = my_value
Token.set_extension("is_x", default=False)
doc[7]._.is_x = True
span = doc[4:10]
span_doc_with = span.as_doc(copy_user_data=True)
span_doc_without = span.as_doc()
assert doc.user_data.get(my_key, None) is my_value
assert span_doc_with.user_data.get(my_key, None) is my_value
assert span_doc_without.user_data.get(my_key, None) is None
for i in range(len(span_doc_with)):
if i != 3:
assert span_doc_with[i]._.is_x is False
else:
assert span_doc_with[i]._.is_x is True
assert not any([t._.is_x for t in span_doc_without])
def test_span_string_label_kb_id(doc):
span = Span(doc, 0, 1, label="hello", kb_id="Q342")
2019-02-07 19:54:07 +00:00
assert span.label_ == "hello"
assert span.label == doc.vocab.strings["hello"]
assert span.kb_id_ == "Q342"
assert span.kb_id == doc.vocab.strings["Q342"]
2019-02-07 19:54:07 +00:00
Add SpanRuler component (#9880) * Add SpanRuler component Add a `SpanRuler` component similar to `EntityRuler` that saves a list of matched spans to `Doc.spans[spans_key]`. The matches from the token and phrase matchers are deduplicated and sorted before assignment but are not otherwise filtered. * Update spacy/pipeline/span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix cast * Add self.key property * Use number of patterns as length * Remove patterns kwarg from init * Update spacy/tests/pipeline/test_span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add options for spans filter and setting to ents * Add `spans_filter` option as a registered function' * Make `spans_key` optional and if `None`, set to `doc.ents` instead of `doc.spans[spans_key]`. * Update and generalize tests * Add test for setting doc.ents, fix key property type * Fix typing * Allow independent doc.spans and doc.ents * If `spans_key` is set, set `doc.spans` with `spans_filter`. * If `annotate_ents` is set, set `doc.ents` with `ents_fitler`. * Use `util.filter_spans` by default as `ents_filter`. * Use a custom warning if the filter does not work for `doc.ents`. * Enable use of SpanC.id in Span * Support id in SpanRuler as Span.id * Update types * `id` can only be provided as string (already by `PatternType` definition) * Update all uses of Span.id/ent_id in Doc * Rename Span id kwarg to span_id * Update types and docs * Add ents filter to mimic EntityRuler overwrite_ents * Refactor `ents_filter` to take `entities, spans` args for more filtering options * Give registered filters more descriptive names * Allow registered `filter_spans` filter (`spacy.first_longest_spans_filter.v1`) to take any number of `Iterable[Span]` objects as args so it can be used for spans filter or ents filter * Implement future entity ruler as span ruler Implement a compatible `entity_ruler` as `future_entity_ruler` using `SpanRuler` as the underlying component: * Add `sort_key` and `sort_reverse` to allow the sorting behavior to be customized. (Necessary for the same sorting/filtering as in `EntityRuler`.) * Implement `overwrite_overlapping_ents_filter` and `preserve_existing_ents_filter` to support `EntityRuler.overwrite_ents` settings. * Add `remove_by_id` to support `EntityRuler.remove` functionality. * Refactor `entity_ruler` tests to parametrize all tests to test both `entity_ruler` and `future_entity_ruler` * Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns` properties. Additional changes: * Move all config settings to top-level attributes to avoid duplicating settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of casting.) * Format * Fix filter make method name * Refactor to use same error for removing by label or ID * Also provide existing spans to spans filter * Support ids property * Remove token_patterns and phrase_patterns * Update docstrings * Add span ruler docs * Fix types * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move sorting into filters * Check for all tokens in seen tokens in entity ruler filters * Remove registered sort key * Set Token.ent_id in a backwards-compatible way in Doc.set_ents * Remove sort options from API docs * Update docstrings * Rename entity ruler filters * Fix and parameterize scoring * Add id to Span API docs * Fix typo in API docs * Include explicit labeled=True for scorer Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-06-02 11:12:53 +00:00
def test_span_string_label_id(doc):
span = Span(doc, 0, 1, label="hello", span_id="Q342")
assert span.label_ == "hello"
assert span.label == doc.vocab.strings["hello"]
assert span.id_ == "Q342"
assert span.id == doc.vocab.strings["Q342"]
def test_span_attrs_writable(doc):
span = Span(doc, 0, 1)
span.label_ = "label"
span.kb_id_ = "kb_id"
Add SpanRuler component (#9880) * Add SpanRuler component Add a `SpanRuler` component similar to `EntityRuler` that saves a list of matched spans to `Doc.spans[spans_key]`. The matches from the token and phrase matchers are deduplicated and sorted before assignment but are not otherwise filtered. * Update spacy/pipeline/span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix cast * Add self.key property * Use number of patterns as length * Remove patterns kwarg from init * Update spacy/tests/pipeline/test_span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add options for spans filter and setting to ents * Add `spans_filter` option as a registered function' * Make `spans_key` optional and if `None`, set to `doc.ents` instead of `doc.spans[spans_key]`. * Update and generalize tests * Add test for setting doc.ents, fix key property type * Fix typing * Allow independent doc.spans and doc.ents * If `spans_key` is set, set `doc.spans` with `spans_filter`. * If `annotate_ents` is set, set `doc.ents` with `ents_fitler`. * Use `util.filter_spans` by default as `ents_filter`. * Use a custom warning if the filter does not work for `doc.ents`. * Enable use of SpanC.id in Span * Support id in SpanRuler as Span.id * Update types * `id` can only be provided as string (already by `PatternType` definition) * Update all uses of Span.id/ent_id in Doc * Rename Span id kwarg to span_id * Update types and docs * Add ents filter to mimic EntityRuler overwrite_ents * Refactor `ents_filter` to take `entities, spans` args for more filtering options * Give registered filters more descriptive names * Allow registered `filter_spans` filter (`spacy.first_longest_spans_filter.v1`) to take any number of `Iterable[Span]` objects as args so it can be used for spans filter or ents filter * Implement future entity ruler as span ruler Implement a compatible `entity_ruler` as `future_entity_ruler` using `SpanRuler` as the underlying component: * Add `sort_key` and `sort_reverse` to allow the sorting behavior to be customized. (Necessary for the same sorting/filtering as in `EntityRuler`.) * Implement `overwrite_overlapping_ents_filter` and `preserve_existing_ents_filter` to support `EntityRuler.overwrite_ents` settings. * Add `remove_by_id` to support `EntityRuler.remove` functionality. * Refactor `entity_ruler` tests to parametrize all tests to test both `entity_ruler` and `future_entity_ruler` * Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns` properties. Additional changes: * Move all config settings to top-level attributes to avoid duplicating settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of casting.) * Format * Fix filter make method name * Refactor to use same error for removing by label or ID * Also provide existing spans to spans filter * Support ids property * Remove token_patterns and phrase_patterns * Update docstrings * Add span ruler docs * Fix types * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move sorting into filters * Check for all tokens in seen tokens in entity ruler filters * Remove registered sort key * Set Token.ent_id in a backwards-compatible way in Doc.set_ents * Remove sort options from API docs * Update docstrings * Rename entity ruler filters * Fix and parameterize scoring * Add id to Span API docs * Fix typo in API docs * Include explicit labeled=True for scorer Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-06-02 11:12:53 +00:00
span.id_ = "id"
def test_span_ents_property(doc):
doc.ents = [
(doc.vocab.strings["PRODUCT"], 0, 1),
(doc.vocab.strings["PRODUCT"], 7, 8),
(doc.vocab.strings["PRODUCT"], 11, 14),
]
assert len(list(doc.ents)) == 3
sentences = list(doc.sents)
assert len(sentences) == 3
assert len(sentences[0].ents) == 1
# First sentence, also tests start of sentence
assert sentences[0].ents[0].text == "This"
assert sentences[0].ents[0].label_ == "PRODUCT"
assert sentences[0].ents[0].start == 0
assert sentences[0].ents[0].end == 1
# Second sentence
assert len(sentences[1].ents) == 1
assert sentences[1].ents[0].text == "another"
assert sentences[1].ents[0].label_ == "PRODUCT"
assert sentences[1].ents[0].start == 7
assert sentences[1].ents[0].end == 8
# Third sentence ents, Also tests end of sentence
assert sentences[2].ents[0].text == "a third."
assert sentences[2].ents[0].label_ == "PRODUCT"
assert sentences[2].ents[0].start == 11
assert sentences[2].ents[0].end == 14
2019-05-08 00:33:40 +00:00
def test_filter_spans(doc):
# Test filtering duplicates
spans = [doc[1:4], doc[6:8], doc[1:4], doc[10:14]]
filtered = filter_spans(spans)
assert len(filtered) == 3
assert filtered[0].start == 1 and filtered[0].end == 4
assert filtered[1].start == 6 and filtered[1].end == 8
assert filtered[2].start == 10 and filtered[2].end == 14
# Test filtering overlaps with longest preference
spans = [doc[1:4], doc[1:3], doc[5:10], doc[7:9], doc[1:4]]
filtered = filter_spans(spans)
assert len(filtered) == 2
assert len(filtered[0]) == 3
assert len(filtered[1]) == 5
assert filtered[0].start == 1 and filtered[0].end == 4
assert filtered[1].start == 5 and filtered[1].end == 10
# Test filtering overlaps with earlier preference for identical length
spans = [doc[1:4], doc[2:5], doc[5:10], doc[7:9], doc[1:4]]
filtered = filter_spans(spans)
assert len(filtered) == 2
assert len(filtered[0]) == 3
assert len(filtered[1]) == 5
assert filtered[0].start == 1 and filtered[0].end == 4
assert filtered[1].start == 5 and filtered[1].end == 10
def test_span_eq_hash(doc, doc_not_parsed):
assert doc[0:2] == doc[0:2]
assert doc[0:2] != doc[1:3]
assert doc[0:2] != doc_not_parsed[0:2]
assert hash(doc[0:2]) == hash(doc[0:2])
assert hash(doc[0:2]) != hash(doc[1:3])
assert hash(doc[0:2]) != hash(doc_not_parsed[0:2])
# check that an out-of-bounds is not equivalent to the span of the full doc
assert doc[0 : len(doc)] != doc[len(doc) : len(doc) + 1]
def test_span_boundaries(doc):
start = 1
end = 5
span = doc[start:end]
for i in range(start, end):
assert span[i - start] == doc[i]
with pytest.raises(IndexError):
2020-08-05 14:00:59 +00:00
span[-5]
with pytest.raises(IndexError):
2020-08-05 14:00:59 +00:00
span[5]
empty_span_0 = doc[0:0]
assert empty_span_0.text == ""
assert empty_span_0.start == 0
assert empty_span_0.end == 0
assert empty_span_0.start_char == 0
assert empty_span_0.end_char == 0
empty_span_1 = doc[1:1]
assert empty_span_1.text == ""
assert empty_span_1.start == 1
assert empty_span_1.end == 1
assert empty_span_1.start_char == empty_span_1.end_char
oob_span_start = doc[-len(doc) - 1 : -len(doc) - 10]
assert oob_span_start.text == ""
assert oob_span_start.start == 0
assert oob_span_start.end == 0
assert oob_span_start.start_char == 0
assert oob_span_start.end_char == 0
oob_span_end = doc[len(doc) + 1 : len(doc) + 10]
assert oob_span_end.text == ""
assert oob_span_end.start == len(doc)
assert oob_span_end.end == len(doc)
assert oob_span_end.start_char == len(doc.text)
assert oob_span_end.end_char == len(doc.text)
def test_span_lemma(doc):
# span lemmas should have the same number of spaces as the span
sp = doc[1:5]
assert len(sp.text.split(" ")) == len(sp.lemma_.split(" "))
def test_sent(en_tokenizer):
doc = en_tokenizer("Check span.sent raises error if doc is not sentencized.")
span = doc[1:3]
2020-10-04 12:52:20 +00:00
assert not span.doc.has_annotation("SENT_START")
with pytest.raises(ValueError):
span.sent
2021-09-20 18:22:49 +00:00
def test_span_with_vectors(doc):
ops = get_current_ops()
prev_vectors = doc.vocab.vectors
vectors = [
("apple", ops.asarray([1, 2, 3])),
("orange", ops.asarray([-1, -2, -3])),
("And", ops.asarray([-1, -1, -1])),
("juice", ops.asarray([5, 5, 10])),
("pie", ops.asarray([7, 6.3, 8.9])),
]
add_vecs_to_vocab(doc.vocab, vectors)
# 0-length span
assert_array_equal(ops.to_numpy(doc[0:0].vector), numpy.zeros((3,)))
2021-09-20 18:22:49 +00:00
# longer span with no vector
assert_array_equal(ops.to_numpy(doc[0:4].vector), numpy.zeros((3,)))
2021-09-20 18:22:49 +00:00
# single-token span with vector
assert_array_equal(ops.to_numpy(doc[10:11].vector), [-1, -1, -1])
doc.vocab.vectors = prev_vectors
# fmt: off
def test_span_comparison(doc):
# Identical start, end, only differ in label and kb_id
assert Span(doc, 0, 3) == Span(doc, 0, 3)
assert Span(doc, 0, 3, "LABEL") == Span(doc, 0, 3, "LABEL")
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") == Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 3) != Span(doc, 0, 3, "LABEL")
assert Span(doc, 0, 3) != Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 3, "LABEL") != Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 3) <= Span(doc, 0, 3) and Span(doc, 0, 3) >= Span(doc, 0, 3)
assert Span(doc, 0, 3, "LABEL") <= Span(doc, 0, 3, "LABEL") and Span(doc, 0, 3, "LABEL") >= Span(doc, 0, 3, "LABEL")
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
assert (Span(doc, 0, 3) < Span(doc, 0, 3, "", kb_id="KB_ID") < Span(doc, 0, 3, "LABEL") < Span(doc, 0, 3, "LABEL", kb_id="KB_ID"))
assert (Span(doc, 0, 3) <= Span(doc, 0, 3, "", kb_id="KB_ID") <= Span(doc, 0, 3, "LABEL") <= Span(doc, 0, 3, "LABEL", kb_id="KB_ID"))
assert (Span(doc, 0, 3, "LABEL", kb_id="KB_ID") > Span(doc, 0, 3, "LABEL") > Span(doc, 0, 3, "", kb_id="KB_ID") > Span(doc, 0, 3))
assert (Span(doc, 0, 3, "LABEL", kb_id="KB_ID") >= Span(doc, 0, 3, "LABEL") >= Span(doc, 0, 3, "", kb_id="KB_ID") >= Span(doc, 0, 3))
# Different end
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 0, 4)
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 0, 4)
assert Span(doc, 0, 4) > Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 4) >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
# Different start
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") != Span(doc, 1, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 1, 3)
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
assert Span(doc, 1, 3) > Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 1, 3) >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
# Different start & different end
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") != Span(doc, 1, 3, "LABEL", kb_id="KB_ID")
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") < Span(doc, 1, 3)
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
Add SpanRuler component (#9880) * Add SpanRuler component Add a `SpanRuler` component similar to `EntityRuler` that saves a list of matched spans to `Doc.spans[spans_key]`. The matches from the token and phrase matchers are deduplicated and sorted before assignment but are not otherwise filtered. * Update spacy/pipeline/span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix cast * Add self.key property * Use number of patterns as length * Remove patterns kwarg from init * Update spacy/tests/pipeline/test_span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add options for spans filter and setting to ents * Add `spans_filter` option as a registered function' * Make `spans_key` optional and if `None`, set to `doc.ents` instead of `doc.spans[spans_key]`. * Update and generalize tests * Add test for setting doc.ents, fix key property type * Fix typing * Allow independent doc.spans and doc.ents * If `spans_key` is set, set `doc.spans` with `spans_filter`. * If `annotate_ents` is set, set `doc.ents` with `ents_fitler`. * Use `util.filter_spans` by default as `ents_filter`. * Use a custom warning if the filter does not work for `doc.ents`. * Enable use of SpanC.id in Span * Support id in SpanRuler as Span.id * Update types * `id` can only be provided as string (already by `PatternType` definition) * Update all uses of Span.id/ent_id in Doc * Rename Span id kwarg to span_id * Update types and docs * Add ents filter to mimic EntityRuler overwrite_ents * Refactor `ents_filter` to take `entities, spans` args for more filtering options * Give registered filters more descriptive names * Allow registered `filter_spans` filter (`spacy.first_longest_spans_filter.v1`) to take any number of `Iterable[Span]` objects as args so it can be used for spans filter or ents filter * Implement future entity ruler as span ruler Implement a compatible `entity_ruler` as `future_entity_ruler` using `SpanRuler` as the underlying component: * Add `sort_key` and `sort_reverse` to allow the sorting behavior to be customized. (Necessary for the same sorting/filtering as in `EntityRuler`.) * Implement `overwrite_overlapping_ents_filter` and `preserve_existing_ents_filter` to support `EntityRuler.overwrite_ents` settings. * Add `remove_by_id` to support `EntityRuler.remove` functionality. * Refactor `entity_ruler` tests to parametrize all tests to test both `entity_ruler` and `future_entity_ruler` * Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns` properties. Additional changes: * Move all config settings to top-level attributes to avoid duplicating settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of casting.) * Format * Fix filter make method name * Refactor to use same error for removing by label or ID * Also provide existing spans to spans filter * Support ids property * Remove token_patterns and phrase_patterns * Update docstrings * Add span ruler docs * Fix types * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move sorting into filters * Check for all tokens in seen tokens in entity ruler filters * Remove registered sort key * Set Token.ent_id in a backwards-compatible way in Doc.set_ents * Remove sort options from API docs * Update docstrings * Rename entity ruler filters * Fix and parameterize scoring * Add id to Span API docs * Fix typo in API docs * Include explicit labeled=True for scorer Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-06-02 11:12:53 +00:00
# Different id
assert Span(doc, 1, 3, span_id="AAA") < Span(doc, 1, 3, span_id="BBB")
# fmt: on
@pytest.mark.parametrize(
"start,end,expected_sentences,expected_sentences_with_hook",
[
(0, 14, 3, 7), # Entire doc
(3, 6, 2, 2), # Overlapping with 2 sentences
(0, 4, 1, 2), # Beginning of the Doc. Full sentence
(0, 3, 1, 2), # Beginning of the Doc. Part of a sentence
(9, 14, 2, 3), # End of the Doc. Overlapping with 2 senteces
(10, 14, 1, 2), # End of the Doc. Full sentence
(11, 14, 1, 2), # End of the Doc. Partial sentence
(0, 0, 1, 1), # Empty Span
],
)
def test_span_sents(doc, start, end, expected_sentences, expected_sentences_with_hook):
assert len(list(doc[start:end].sents)) == expected_sentences
def user_hook(doc):
return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
doc.user_hooks["sents"] = user_hook
assert len(list(doc[start:end].sents)) == expected_sentences_with_hook
doc.user_span_hooks["sents"] = lambda x: [x]
assert list(doc[start:end].sents)[0] == doc[start:end]
assert len(list(doc[start:end].sents)) == 1
def test_span_sents_not_parsed(doc_not_parsed):
with pytest.raises(ValueError):
list(Span(doc_not_parsed, 0, 3).sents)
def test_span_group_copy(doc):
doc.spans["test"] = [doc[0:1], doc[2:4]]
assert len(doc.spans["test"]) == 2
doc_copy = doc.copy()
# check that the spans were indeed copied
assert len(doc_copy.spans["test"]) == 2
# add a new span to the original doc
doc.spans["test"].append(doc[3:4])
assert len(doc.spans["test"]) == 3
# check that the copy spans were not modified and this is an isolated doc
assert len(doc_copy.spans["test"]) == 2
def test_for_partial_ent_sents():
"""Spans may be associated with multiple sentences. These .sents should always be complete, not partial, sentences,
which this tests for.
"""
doc = Doc(
English().vocab,
words=["Mahler's", "Symphony", "No.", "8", "was", "beautiful."],
sent_starts=[1, 0, 0, 1, 0, 0],
)
doc.set_ents([Span(doc, 1, 4, "WORK")])
# The specified entity is associated with both sentences in this doc, so we expect all sentences in the doc to be
# equal to the sentences referenced in ent.sents.
for doc_sent, ent_sent in zip(doc.sents, doc.ents[0].sents):
assert doc_sent == ent_sent
def test_for_no_ent_sents():
"""Span.sents() should set .sents correctly, even if Span in question is trailing and doesn't form a full
sentence.
"""
doc = Doc(
English().vocab,
words=["This", "is", "a", "test.", "ENTITY"],
sent_starts=[1, 0, 0, 0, 1],
)
doc.set_ents([Span(doc, 4, 5, "WORK")])
sents = list(doc.ents[0].sents)
assert len(sents) == 1
assert str(sents[0]) == str(doc.ents[0].sent) == "ENTITY"
def test_span_api_richcmp_other(en_tokenizer):
doc1 = en_tokenizer("a b")
doc2 = en_tokenizer("b c")
assert not doc1[1:2] == doc1[1]
assert not doc1[1:2] == doc2[0]
assert not doc1[1:2] == doc2[0:1]
assert not doc1[0:1] == doc2