mirror of https://github.com/explosion/spaCy.git
102 lines
3.6 KiB
Cython
102 lines
3.6 KiB
Cython
|
import numpy
|
||
|
from ..errors import Errors, AlignmentError
|
||
|
|
||
|
|
||
|
cdef class Alignment:
|
||
|
def __init__(self, spacy_words, gold_words):
|
||
|
# Do many-to-one alignment for misaligned tokens.
|
||
|
# If we over-segment, we'll have one gold word that covers a sequence
|
||
|
# of predicted words
|
||
|
# If we under-segment, we'll have one predicted word that covers a
|
||
|
# sequence of gold words.
|
||
|
# If we "mis-segment", we'll have a sequence of predicted words covering
|
||
|
# a sequence of gold words. That's many-to-many -- we don't do that
|
||
|
# except for NER spans where the start and end can be aligned.
|
||
|
cost, i2j, j2i, i2j_multi, j2i_multi = align(spacy_words, gold_words)
|
||
|
self.cost = cost
|
||
|
self.i2j = i2j
|
||
|
self.j2i = j2i
|
||
|
self.i2j_multi = i2j_multi
|
||
|
self.j2i_multi = j2i_multi
|
||
|
self.cand_to_gold = [(j if j >= 0 else None) for j in i2j]
|
||
|
self.gold_to_cand = [(i if i >= 0 else None) for i in j2i]
|
||
|
|
||
|
|
||
|
def align(tokens_a, tokens_b):
|
||
|
"""Calculate alignment tables between two tokenizations.
|
||
|
|
||
|
tokens_a (List[str]): The candidate tokenization.
|
||
|
tokens_b (List[str]): The reference tokenization.
|
||
|
RETURNS: (tuple): A 5-tuple consisting of the following information:
|
||
|
* cost (int): The number of misaligned tokens.
|
||
|
* a2b (List[int]): Mapping of indices in `tokens_a` to indices in `tokens_b`.
|
||
|
For instance, if `a2b[4] == 6`, that means that `tokens_a[4]` aligns
|
||
|
to `tokens_b[6]`. If there's no one-to-one alignment for a token,
|
||
|
it has the value -1.
|
||
|
* b2a (List[int]): The same as `a2b`, but mapping the other direction.
|
||
|
* a2b_multi (Dict[int, int]): A dictionary mapping indices in `tokens_a`
|
||
|
to indices in `tokens_b`, where multiple tokens of `tokens_a` align to
|
||
|
the same token of `tokens_b`.
|
||
|
* b2a_multi (Dict[int, int]): As with `a2b_multi`, but mapping the other
|
||
|
direction.
|
||
|
"""
|
||
|
tokens_a = _normalize_for_alignment(tokens_a)
|
||
|
tokens_b = _normalize_for_alignment(tokens_b)
|
||
|
cost = 0
|
||
|
a2b = numpy.empty(len(tokens_a), dtype="i")
|
||
|
b2a = numpy.empty(len(tokens_b), dtype="i")
|
||
|
a2b.fill(-1)
|
||
|
b2a.fill(-1)
|
||
|
a2b_multi = {}
|
||
|
b2a_multi = {}
|
||
|
i = 0
|
||
|
j = 0
|
||
|
offset_a = 0
|
||
|
offset_b = 0
|
||
|
while i < len(tokens_a) and j < len(tokens_b):
|
||
|
a = tokens_a[i][offset_a:]
|
||
|
b = tokens_b[j][offset_b:]
|
||
|
if a == b:
|
||
|
if offset_a == offset_b == 0:
|
||
|
a2b[i] = j
|
||
|
b2a[j] = i
|
||
|
elif offset_a == 0:
|
||
|
cost += 2
|
||
|
a2b_multi[i] = j
|
||
|
elif offset_b == 0:
|
||
|
cost += 2
|
||
|
b2a_multi[j] = i
|
||
|
offset_a = offset_b = 0
|
||
|
i += 1
|
||
|
j += 1
|
||
|
elif a == "":
|
||
|
assert offset_a == 0
|
||
|
cost += 1
|
||
|
i += 1
|
||
|
elif b == "":
|
||
|
assert offset_b == 0
|
||
|
cost += 1
|
||
|
j += 1
|
||
|
elif b.startswith(a):
|
||
|
cost += 1
|
||
|
if offset_a == 0:
|
||
|
a2b_multi[i] = j
|
||
|
i += 1
|
||
|
offset_a = 0
|
||
|
offset_b += len(a)
|
||
|
elif a.startswith(b):
|
||
|
cost += 1
|
||
|
if offset_b == 0:
|
||
|
b2a_multi[j] = i
|
||
|
j += 1
|
||
|
offset_b = 0
|
||
|
offset_a += len(b)
|
||
|
else:
|
||
|
assert "".join(tokens_a) != "".join(tokens_b)
|
||
|
raise AlignmentError(Errors.E186.format(tok_a=tokens_a, tok_b=tokens_b))
|
||
|
return cost, a2b, b2a, a2b_multi, b2a_multi
|
||
|
|
||
|
|
||
|
def _normalize_for_alignment(tokens):
|
||
|
return [w.replace(" ", "").lower() for w in tokens]
|