spaCy/spacy/cli/evaluate.py

120 lines
4.2 KiB
Python
Raw Normal View History

2017-10-01 19:04:32 +00:00
# coding: utf8
from __future__ import unicode_literals, division, print_function
import plac
import json
from collections import defaultdict
import cytoolz
from pathlib import Path
import dill
import tqdm
from thinc.neural._classes.model import Model
from thinc.neural.optimizers import linear_decay
from timeit import default_timer as timer
import random
import numpy.random
from ..tokens.doc import Doc
from ..scorer import Scorer
from ..gold import GoldParse, merge_sents
from ..gold import GoldCorpus, minibatch
from ..util import prints
from .. import util
from .. import about
from .. import displacy
from ..compat import json_dumps
random.seed(0)
numpy.random.seed(0)
@plac.annotations(
model=("Model name or path", "positional", None, str),
data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
2017-10-03 14:15:35 +00:00
gpu_id=("Use GPU", "option", "g", int),
displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
displacy_limit=("Limit of parses to render as HTML", "option", "dl", int)
2017-10-01 19:04:32 +00:00
)
def evaluate(cmd, model, data_path, gpu_id=-1, gold_preproc=False,
displacy_path=None, displacy_limit=25):
2017-10-01 19:04:32 +00:00
"""
Evaluate a model. To render a sample of parses in a HTML file, set an output
directory as the displacy_path argument.
2017-10-01 19:04:32 +00:00
"""
2017-10-03 14:15:35 +00:00
util.use_gpu(gpu_id)
2017-10-03 20:47:31 +00:00
util.set_env_log(False)
2017-10-01 19:04:32 +00:00
data_path = util.ensure_path(data_path)
displacy_path = util.ensure_path(displacy_path)
2017-10-01 19:04:32 +00:00
if not data_path.exists():
prints(data_path, title="Evaluation data not found", exits=1)
if displacy_path and not displacy_path.exists():
prints(displacy_path, title="Visualization output directory not found", exits=1)
2017-10-01 19:04:32 +00:00
corpus = GoldCorpus(data_path, data_path)
nlp = util.load_model(model)
2017-10-03 14:15:35 +00:00
dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
begin = timer()
scorer = nlp.evaluate(dev_docs, verbose=False)
end = timer()
nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
print_results(scorer, time=end - begin, words=nwords,
wps=nwords / (end - begin))
if displacy_path:
docs, golds = zip(*dev_docs)
render_deps = 'parser' in nlp.meta.get('pipeline', [])
render_ents = 'ner' in nlp.meta.get('pipeline', [])
render_parses(docs, displacy_path, model_name=model, limit=displacy_limit,
deps=render_deps, ents=render_ents)
prints(displacy_path, title="Generated %s parses as HTML" % displacy_limit)
2017-10-01 19:04:32 +00:00
def render_parses(docs, output_path, model_name='', limit=250, deps=True, ents=True):
docs[0].user_data['title'] = model_name
if ents:
with (output_path / 'entities.html').open('w') as file_:
html = displacy.render(docs[:limit], style='ent', page=True)
file_.write(html)
if deps:
with (output_path / 'parses.html').open('w') as file_:
html = displacy.render(docs[:limit], style='dep', page=True, options={'compact': True})
file_.write(html)
2017-10-01 19:04:32 +00:00
def print_progress(itn, losses, dev_scores, wps=0.0):
scores = {}
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
'ents_p', 'ents_r', 'ents_f', 'wps']:
scores[col] = 0.0
scores['dep_loss'] = losses.get('parser', 0.0)
scores['ner_loss'] = losses.get('ner', 0.0)
scores['tag_loss'] = losses.get('tagger', 0.0)
scores.update(dev_scores)
scores['wps'] = wps
tpl = '\t'.join((
'{:d}',
'{dep_loss:.3f}',
'{ner_loss:.3f}',
'{uas:.3f}',
'{ents_p:.3f}',
'{ents_r:.3f}',
'{ents_f:.3f}',
'{tags_acc:.3f}',
'{token_acc:.3f}',
'{wps:.1f}'))
print(tpl.format(itn, **scores))
def print_results(scorer, time, words, wps):
2017-10-01 19:04:32 +00:00
results = {
'Time': '%.2f s' % time,
'Words': words,
'Words/s': '%.0f' % wps,
2017-10-01 19:04:32 +00:00
'TOK': '%.2f' % scorer.token_acc,
'POS': '%.2f' % scorer.tags_acc,
'UAS': '%.2f' % scorer.uas,
'LAS': '%.2f' % scorer.las,
'NER P': '%.2f' % scorer.ents_p,
'NER R': '%.2f' % scorer.ents_r,
'NER F': '%.2f' % scorer.ents_f}
util.print_table(results, title="Results")