spaCy/spacy/tests/regression/test_issue4030.py

49 lines
1.5 KiB
Python
Raw Normal View History

import spacy
from spacy.util import minibatch, compounding
def test_issue4030():
""" Test whether textcat works fine with empty doc """
unique_classes = ["offensive", "inoffensive"]
x_train = [
"This is an offensive text",
"This is the second offensive text",
"inoff",
]
y_train = ["offensive", "offensive", "inoffensive"]
# preparing the data
pos_cats = list()
for train_instance in y_train:
pos_cats.append({label: label == train_instance for label in unique_classes})
train_data = list(zip(x_train, [{"cats": cats} for cats in pos_cats]))
# set up the spacy model with a text categorizer component
nlp = spacy.blank("en")
textcat = nlp.create_pipe(
"textcat",
config={"exclusive_classes": True, "architecture": "bow", "ngram_size": 2},
)
for label in unique_classes:
textcat.add_label(label)
nlp.add_pipe(textcat, last=True)
# training the network
with nlp.disable_pipes([p for p in nlp.pipe_names if p != "textcat"]):
optimizer = nlp.begin_training()
for i in range(3):
losses = {}
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(
2020-02-18 14:38:18 +00:00
examples=batch, sgd=optimizer, drop=0.1, losses=losses,
)
# processing of an empty doc should result in 0.0 for all categories
doc = nlp("")
assert doc.cats["offensive"] == 0.0
assert doc.cats["inoffensive"] == 0.0