spaCy/spacy/en/__init__.py

221 lines
7.2 KiB
Python
Raw Normal View History

2014-12-21 20:25:43 +00:00
from __future__ import unicode_literals
from os import path
import re
2014-12-21 20:25:43 +00:00
from .. import orth
2014-12-21 20:25:43 +00:00
from ..vocab import Vocab
from ..tokenizer import Tokenizer
from ..syntax.parser import Parser
from ..syntax.arc_eager import ArcEager
2015-03-08 23:04:00 +00:00
from ..syntax.ner import BiluoPushDown
2014-12-21 20:25:43 +00:00
from ..tokens import Tokens
from ..multi_words import RegexMerger
2014-12-21 20:25:43 +00:00
from .pos import EnPosTagger
from .pos import POS_TAGS
2014-12-21 20:25:43 +00:00
from .attrs import get_flags
from . import regexes
2014-12-21 20:25:43 +00:00
from ..util import read_lang_data
2014-12-21 20:25:43 +00:00
def get_lex_props(string):
return {
'flags': get_flags(string),
'length': len(string),
2015-01-22 15:08:25 +00:00
'orth': string,
'lower': string.lower(),
'norm': string,
'shape': orth.word_shape(string),
'prefix': string[0],
'suffix': string[-3:],
'cluster': 0,
'prob': 0,
'sentiment': 0
}
2014-12-21 20:25:43 +00:00
LOCAL_DATA_DIR = path.join(path.dirname(__file__), 'data')
2014-12-21 20:25:43 +00:00
2015-01-26 15:45:21 +00:00
parse_if_model_present = -1
2014-12-21 20:25:43 +00:00
class English(object):
2014-12-27 07:45:16 +00:00
"""The English NLP pipeline.
2015-07-07 12:00:07 +00:00
Example:
Load data from default directory:
>>> nlp = English()
>>> nlp = English(data_dir=u'')
Load data from specified directory:
>>> nlp = English(data_dir=u'path/to/data_directory')
Disable (and avoid loading) parts of the processing pipeline:
>>> nlp = English(vectors=False, parser=False, tagger=False, entity=False)
Start with nothing loaded:
>>> nlp = English(data_dir=None)
2014-12-27 07:45:16 +00:00
Keyword args:
2015-02-11 20:13:20 +00:00
data_dir (unicode):
2015-07-07 12:00:07 +00:00
A path to a directory from which to load the pipeline;
or '', to load default; or None, to load nothing.
Tokenizer (bool or callable):
desc
2014-12-27 07:45:16 +00:00
2015-07-07 12:00:07 +00:00
Vectors (bool or callable):
desc
2014-12-27 07:45:16 +00:00
2015-07-07 12:00:07 +00:00
Parser (bool or callable):
desc
2015-01-31 05:38:27 +00:00
2015-07-07 12:00:07 +00:00
Tagger (bool or callable):
desc
Entity (bool or callable):
desc
Senser (bool or callable):
desc
2014-12-27 07:45:16 +00:00
"""
ParserTransitionSystem = ArcEager
2015-03-08 23:04:00 +00:00
EntityTransitionSystem = BiluoPushDown
2015-07-07 12:00:07 +00:00
def __init__(self, data_dir='', Tokenizer=True, Vectors=True, Parser=True,
Tagger=True, Entity=True, Senser=True, load_vectors=True):
2015-01-31 05:38:27 +00:00
if data_dir == '':
data_dir = LOCAL_DATA_DIR
2015-07-07 12:00:07 +00:00
# TODO: Deprecation warning
if load_vectors is False:
vectors = False
self.vocab = Vocab(data_dir=path.join(data_dir, 'vocab') if data_dir else None,
2015-07-07 12:00:07 +00:00
get_lex_props=get_lex_props, vectors=Vectors)
if Tokenizer is True:
Tokenizer = tokenizer.Tokenizer
if Tagger is True:
Tagger = pos.EnPosTagger
if Parser is True:
transition_system = self.ParserTransitionSystem
Parser = lambda s, d: parser.Parser(s, d, transition_system
if Entity is True:
transition_system = self.EntityTransitionSystem
Entity = lambda s, d: parser.Parser(s, d, transition_system)
if Senser is True:
Senser = wsd.SuperSenseTagger
self.tokenizer = Tokenizer(self.vocab, data_dir) if Tokenizer else None
self.tagger = Tagger(self.vocab.strings, data_dir) if Tagger else None
self.parser = Parser(self.vocab.strings, data_dir) if Parser else None
self.entity = Entity(self.vocab.strings, data_dir) if Entity else None
self.senser = Senser(self.vocab.strings, data_dir) if Senser else None
self._data_dir = data_dir
2014-12-30 12:25:09 +00:00
tag_names = list(POS_TAGS.keys())
tag_names.sort()
if data_dir is None:
tok_rules = {}
prefix_re = None
suffix_re = None
infix_re = None
else:
tok_data_dir = path.join(data_dir, 'tokenizer')
tok_rules, prefix_re, suffix_re, infix_re = read_lang_data(tok_data_dir)
prefix_re = re.compile(prefix_re)
suffix_re = re.compile(suffix_re)
infix_re = re.compile(infix_re)
2015-01-31 05:38:27 +00:00
self.tokenizer = Tokenizer(self.vocab, tok_rules, prefix_re,
suffix_re, infix_re,
POS_TAGS, tag_names)
2015-07-07 12:00:07 +00:00
self.mwe_merger = RegexMerger([
('IN', 'O', regexes.MW_PREPOSITIONS_RE),
('CD', 'TIME', regexes.TIME_RE),
('NNP', 'DATE', regexes.DAYS_RE),
('CD', 'MONEY', regexes.MONEY_RE)])
2015-03-08 23:04:00 +00:00
def __call__(self, text, tag=True, parse=parse_if_model_present,
2015-04-16 02:20:31 +00:00
entity=parse_if_model_present, merge_mwes=False):
2015-01-26 15:45:21 +00:00
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
2015-04-19 08:31:31 +00:00
2015-01-26 15:45:21 +00:00
The tagger and parser are lazy-loaded the first time they are required.
Loading the parser model usually takes 5-10 seconds.
2015-04-19 08:31:31 +00:00
2014-12-27 07:45:16 +00:00
Args:
text (unicode): The text to be processed.
Keyword args:
2015-01-26 15:45:21 +00:00
tag (bool): Whether to add part-of-speech tags to the text. Also
sets morphological analysis and lemmas.
2015-04-19 08:31:31 +00:00
2015-01-26 15:45:21 +00:00
parse (True, False, -1): Whether to add labelled syntactic dependencies.
2015-04-19 08:31:31 +00:00
2015-01-26 15:45:21 +00:00
-1 (default) is "guess": It will guess True if tag=True and the
model has been installed.
2014-12-27 07:45:16 +00:00
Returns:
tokens (spacy.tokens.Tokens):
2015-01-26 15:45:21 +00:00
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
2014-12-27 07:45:16 +00:00
"""
2015-01-26 15:45:21 +00:00
if parse == True and tag == False:
msg = ("Incompatible arguments: tag=False, parse=True"
"Part-of-speech tags are required for parsing.")
raise ValueError(msg)
2015-03-08 23:04:00 +00:00
if entity == True and tag == False:
msg = ("Incompatible arguments: tag=False, entity=True"
"Part-of-speech tags are required for entity recognition.")
raise ValueError(msg)
tokens = self.tokenizer(text)
2015-01-26 15:45:21 +00:00
if parse == -1 and tag == False:
parse = False
elif parse == -1 and not self.has_parser_model:
parse = False
2015-03-08 23:04:00 +00:00
if entity == -1 and tag == False:
entity = False
elif entity == -1 and not self.has_entity_model:
entity = False
2015-01-26 15:45:21 +00:00
if tag and self.has_tagger_model:
self.tagger(tokens)
2015-01-26 15:45:21 +00:00
if parse == True and not self.has_parser_model:
2015-03-08 23:04:00 +00:00
msg = ("Received parse=True, but parser model not found.\n\n"
"Run:\n"
"$ python -m spacy.en.download\n"
"To install the model.")
raise IOError(msg)
if entity == True and not self.has_entity_model:
msg = ("Received entity=True, but entity model not found.\n\n"
2015-01-26 15:45:21 +00:00
"Run:\n"
"$ python -m spacy.en.download\n"
"To install the model.")
raise IOError(msg)
2015-03-08 23:04:00 +00:00
if parse and self.has_parser_model:
self.parser(tokens)
2015-03-08 23:04:00 +00:00
if entity and self.has_entity_model:
self.entity(tokens)
if merge_mwes and self.mwe_merger is not None:
self.mwe_merger(tokens)
2014-12-21 20:25:43 +00:00
return tokens
2014-12-24 06:42:00 +00:00
@property
def tags(self):
2014-12-27 07:45:16 +00:00
"""List of part-of-speech tag names."""
return self.tagger.tag_names