mirror of https://github.com/explosion/spaCy.git
36 lines
1019 B
Python
36 lines
1019 B
Python
|
# coding: utf-8
|
||
|
from __future__ import unicode_literals
|
||
|
|
||
|
from ...pipeline import EntityRecognizer
|
||
|
from ..util import get_doc
|
||
|
from ...tokens import Span
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
|
||
|
def test_doc_add_entities_set_ents_iob(en_vocab):
|
||
|
text = ["This", "is", "a", "lion"]
|
||
|
doc = get_doc(en_vocab, text)
|
||
|
ner = EntityRecognizer(en_vocab)
|
||
|
ner.begin_training([])
|
||
|
ner(doc)
|
||
|
|
||
|
assert len(list(doc.ents)) == 0
|
||
|
assert [w.ent_iob_ for w in doc] == (['O'] * len(doc))
|
||
|
|
||
|
doc.ents = [(doc.vocab.strings['ANIMAL'], 3, 4)]
|
||
|
assert [w.ent_iob_ for w in doc] == ['', '', '', 'B']
|
||
|
|
||
|
doc.ents = [(doc.vocab.strings['WORD'], 0, 2)]
|
||
|
assert [w.ent_iob_ for w in doc] == ['B', 'I', '', '']
|
||
|
|
||
|
def test_add_overlapping_entities(en_vocab):
|
||
|
text = ["Louisiana", "Office", "of", "Conservation"]
|
||
|
doc = get_doc(en_vocab, text)
|
||
|
entity = Span(doc, 0, 4, label=391)
|
||
|
doc.ents = [entity]
|
||
|
|
||
|
new_entity = Span(doc, 0, 1, label=392)
|
||
|
with pytest.raises(ValueError):
|
||
|
doc.ents = list(doc.ents) + [new_entity]
|