spaCy/website/api/_architecture/_cython.jade

116 lines
6.0 KiB
Plaintext
Raw Normal View History

2017-10-03 12:27:22 +00:00
//- 💫 DOCS > API > ARCHITECTURE > CYTHON
+aside("What's Cython?")
| #[+a("http://cython.org/") Cython] is a language for writing
| C extensions for Python. Most Python code is also valid Cython, but
| you can add type declarations to get efficient memory-managed code
| just like C or C++.
p
| spaCy's core data structures are implemented as
| #[+a("http://cython.org/") Cython] #[code cdef] classes. Memory is
| managed through the #[+a(gh("cymem")) #[code cymem]]
| #[code cymem.Pool] class, which allows you
| to allocate memory which will be freed when the #[code Pool] object
| is garbage collected. This means you usually don't have to worry
| about freeing memory. You just have to decide which Python object
| owns the memory, and make it own the #[code Pool]. When that object
| goes out of scope, the memory will be freed. You do have to take
| care that no pointers outlive the object that owns them — but this
| is generally quite easy.
p
| All Cython modules should have the #[code # cython: infer_types=True]
| compiler directive at the top of the file. This makes the code much
| cleaner, as it avoids the need for many type declarations. If
| possible, you should prefer to declare your functions #[code nogil],
| even if you don't especially care about multi-threading. The reason
| is that #[code nogil] functions help the Cython compiler reason about
| your code quite a lot — you're telling the compiler that no Python
| dynamics are possible. This lets many errors be raised, and ensures
| your function will run at C speed.
p
| Cython gives you many choices of sequences: you could have a Python
| list, a numpy array, a memory view, a C++ vector, or a pointer.
| Pointers are preferred, because they are fastest, have the most
| explicit semantics, and let the compiler check your code more
| strictly. C++ vectors are also great — but you should only use them
| internally in functions. It's less friendly to accept a vector as an
| argument, because that asks the user to do much more work. Here's
| how to get a pointer from a numpy array, memory view or vector:
+code.
cdef void get_pointers(np.ndarray[int, mode='c'] numpy_array, vector[int] cpp_vector, int[::1] memory_view) nogil:
pointer1 = <int*>numpy_array.data
pointer2 = cpp_vector.data()
pointer3 = &memory_view[0]
p
| Both C arrays and C++ vectors reassure the compiler that no Python
| operations are possible on your variable. This is a big advantage:
| it lets the Cython compiler raise many more errors for you.
p
| When getting a pointer from a numpy array or memoryview, take care
| that the data is actually stored in C-contiguous order — otherwise
| you'll get a pointer to nonsense. The type-declarations in the code
| above should generate runtime errors if buffers with incorrect
| memory layouts are passed in. To iterate over the array, the
| following style is preferred:
+code.
cdef int c_total(const int* int_array, int length) nogil:
total = 0
for item in int_array[:length]:
total += item
return total
p
| If this is confusing, consider that the compiler couldn't deal with
| #[code for item in int_array:] — there's no length attached to a raw
| pointer, so how could we figure out where to stop? The length is
| provided in the slice notation as a solution to this. Note that we
| don't have to declare the type of #[code item] in the code above —
| the compiler can easily infer it. This gives us tidy code that looks
| quite like Python, but is exactly as fast as C — because we've made
| sure the compilation to C is trivial.
p
| Your functions cannot be declared #[code nogil] if they need to
| create Python objects or call Python functions. This is perfectly
| okay — you shouldn't torture your code just to get #[code nogil]
| functions. However, if your function isn't #[code nogil], you should
| compile your module with #[code cython -a --cplus my_module.pyx] and
| open the resulting #[code my_module.html] file in a browser. This
| will let you see how Cython is compiling your code. Calls into the
| Python run-time will be in bright yellow. This lets you easily see
| whether Cython is able to correctly type your code, or whether there
| are unexpected problems.
p
| Working in Cython is very rewarding once you're over the initial
| learning curve. As with C and C++, the first way you write something
| in Cython will often be the performance-optimal approach. In
| contrast, Python optimisation generally requires a lot of
| experimentation. Is it faster to have an #[code if item in my_dict]
| check, or to use #[code .get()]? What about
| #[code try]/#[code except]? Does this numpy operation create a copy?
| There's no way to guess the answers to these questions, and you'll
| usually be dissatisfied with your results — so there's no way to
| know when to stop this process. In the worst case, you'll make a
| mess that invites the next reader to try their luck too. This is
| like one of those
| #[+a("http://www.wemjournal.org/article/S1080-6032%2809%2970088-2/abstract") volcanic gas-traps],
| where the rescuers keep passing out from low oxygen, causing
| another rescuer to follow — only to succumb themselves. In short,
| just say no to optimizing your Python. If it's not fast enough the
| first time, just switch to Cython.
+infobox("Resources")
+list.o-no-block
+item #[+a("http://docs.cython.org/en/latest/") Official Cython documentation] (cython.org)
+item #[+a("https://explosion.ai/blog/writing-c-in-cython", true) Writing C in Cython] (explosion.ai)
+item #[+a("https://explosion.ai/blog/multithreading-with-cython") Multi-threading spaCys parser and named entity recogniser] (explosion.ai)