spaCy/spacy/lemmatizer.py

174 lines
6.2 KiB
Python
Raw Normal View History

# coding: utf8
from __future__ import unicode_literals
from collections import OrderedDict
2019-09-11 12:00:36 +00:00
from .symbols import NOUN, VERB, ADJ, PUNCT, PROPN
from .errors import Errors
from .lookups import Lookups
2014-12-23 04:16:57 +00:00
class Lemmatizer(object):
"""
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
lookup tables.
DOCS: https://spacy.io/api/lemmatizer
"""
@classmethod
def load(cls, *args, **kwargs):
raise NotImplementedError(Errors.E172)
def __init__(self, lookups, *args, **kwargs):
"""Initialize a Lemmatizer.
2014-12-23 04:16:57 +00:00
lookups (Lookups): The lookups object containing the (optional) tables
"lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup".
RETURNS (Lemmatizer): The newly constructed object.
"""
if args or kwargs or not isinstance(lookups, Lookups):
raise ValueError(Errors.E173)
self.lookups = lookups
2015-08-25 13:46:19 +00:00
def __call__(self, string, univ_pos, morphology=None):
"""Lemmatize a string.
string (unicode): The string to lemmatize, e.g. the token text.
univ_pos (unicode / int): The token's universal part-of-speech tag.
morphology (dict): The token's morphological features following the
Universal Dependencies scheme.
RETURNS (list): The available lemmas for the string.
"""
lookup_table = self.lookups.get_table("lemma_lookup", {})
if "lemma_rules" not in self.lookups:
return [lookup_table.get(string, string)]
if univ_pos in (NOUN, "NOUN", "noun"):
univ_pos = "noun"
elif univ_pos in (VERB, "VERB", "verb"):
univ_pos = "verb"
elif univ_pos in (ADJ, "ADJ", "adj"):
univ_pos = "adj"
elif univ_pos in (PUNCT, "PUNCT", "punct"):
univ_pos = "punct"
elif univ_pos in (PROPN, "PROPN"):
return [string]
else:
return [string.lower()]
# See Issue #435 for example of where this logic is requied.
if self.is_base_form(univ_pos, morphology):
return [string.lower()]
index_table = self.lookups.get_table("lemma_index", {})
exc_table = self.lookups.get_table("lemma_exc", {})
rules_table = self.lookups.get_table("lemma_rules", {})
lemmas = self.lemmatize(
string,
index_table.get(univ_pos, {}),
exc_table.get(univ_pos, {}),
rules_table.get(univ_pos, []),
)
2015-09-08 13:38:03 +00:00
return lemmas
2014-12-23 04:16:57 +00:00
def is_base_form(self, univ_pos, morphology=None):
"""
Check whether we're dealing with an uninflected paradigm, so we can
avoid lemmatization entirely.
univ_pos (unicode / int): The token's universal part-of-speech tag.
morphology (dict): The token's morphological features following the
Universal Dependencies scheme.
"""
2019-09-08 16:09:53 +00:00
if morphology is None:
morphology = {}
if univ_pos == "noun" and morphology.get("Number") == "sing":
return True
elif univ_pos == "verb" and morphology.get("VerbForm") == "inf":
return True
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
# morphology
elif univ_pos == "verb" and (
morphology.get("VerbForm") == "fin"
and morphology.get("Tense") == "pres"
and morphology.get("Number") is None
):
return True
elif univ_pos == "adj" and morphology.get("Degree") == "pos":
return True
2019-09-11 12:00:36 +00:00
elif morphology.get("VerbForm") == "inf":
2017-03-25 20:56:41 +00:00
return True
2019-09-11 12:00:36 +00:00
elif morphology.get("VerbForm") == "none":
2017-03-25 20:56:41 +00:00
return True
2019-09-11 12:00:36 +00:00
elif morphology.get("Degree") == "pos":
return True
else:
return False
2014-12-23 04:16:57 +00:00
def noun(self, string, morphology=None):
return self(string, "noun", morphology)
2014-12-23 04:16:57 +00:00
def verb(self, string, morphology=None):
return self(string, "verb", morphology)
2014-12-23 04:16:57 +00:00
def adj(self, string, morphology=None):
return self(string, "adj", morphology)
def det(self, string, morphology=None):
return self(string, "det", morphology)
def pron(self, string, morphology=None):
return self(string, "pron", morphology)
def adp(self, string, morphology=None):
return self(string, "adp", morphology)
def num(self, string, morphology=None):
return self(string, "num", morphology)
def punct(self, string, morphology=None):
return self(string, "punct", morphology)
def lookup(self, string, orth=None):
"""Look up a lemma in the table, if available. If no lemma is found,
the original string is returned.
string (unicode): The original string.
orth (int): Optional hash of the string to look up. If not set, the
string will be used and hashed.
RETURNS (unicode): The lemma if the string was found, otherwise the
original string.
"""
lookup_table = self.lookups.get_table("lemma_lookup", {})
key = orth if orth is not None else string
if key in lookup_table:
return lookup_table[key]
return string
def lemmatize(self, string, index, exceptions, rules):
orig = string
string = string.lower()
forms = []
oov_forms = []
for old, new in rules:
if string.endswith(old):
form = string[: len(string) - len(old)] + new
if not form:
pass
elif form in index or not form.isalpha():
forms.append(form)
else:
oov_forms.append(form)
# Remove duplicates but preserve the ordering of applied "rules"
forms = list(OrderedDict.fromkeys(forms))
# Put exceptions at the front of the list, so they get priority.
# This is a dodgy heuristic -- but it's the best we can do until we get
# frequencies on this. We can at least prune out problematic exceptions,
# if they shadow more frequent analyses.
for form in exceptions.get(string, []):
if form not in forms:
forms.insert(0, form)
if not forms:
forms.extend(oov_forms)
if not forms:
forms.append(orig)
return forms