spaCy/spacy/scorer.py

984 lines
38 KiB
Python
Raw Normal View History

from typing import Optional, Iterable, Dict, Set, Any, Callable, TYPE_CHECKING
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
import numpy as np
from collections import defaultdict
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
from .training import Example
2021-01-05 02:41:53 +00:00
from .tokens import Token, Doc, Span
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
from .errors import Errors
from .util import get_lang_class, SimpleFrozenList
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
from .morphology import Morphology
2015-05-27 01:18:16 +00:00
2020-07-28 19:39:42 +00:00
if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports
from .language import Language # noqa: F401
DEFAULT_PIPELINE = ("senter", "tagger", "morphologizer", "parser", "ner", "textcat")
MISSING_VALUES = frozenset([None, 0, ""])
2020-07-28 19:39:42 +00:00
2015-04-05 20:29:30 +00:00
2020-07-12 12:03:23 +00:00
class PRFScore:
2020-07-28 19:39:42 +00:00
"""A precision / recall / F score."""
def __init__(
self,
*,
tp: int = 0,
fp: int = 0,
fn: int = 0,
) -> None:
self.tp = tp
self.fp = fp
self.fn = fn
def __len__(self) -> int:
return self.tp + self.fp + self.fn
def __iadd__(self, other):
self.tp += other.tp
self.fp += other.fp
self.fn += other.fn
return self
def __add__(self, other):
return PRFScore(
2020-09-29 19:39:28 +00:00
tp=self.tp + other.tp, fp=self.fp + other.fp, fn=self.fn + other.fn
)
2020-07-28 19:39:42 +00:00
def score_set(self, cand: set, gold: set) -> None:
self.tp += len(cand.intersection(gold))
self.fp += len(cand - gold)
self.fn += len(gold - cand)
@property
2020-07-28 19:39:42 +00:00
def precision(self) -> float:
return self.tp / (self.tp + self.fp + 1e-100)
@property
2020-07-28 19:39:42 +00:00
def recall(self) -> float:
return self.tp / (self.tp + self.fn + 1e-100)
@property
2020-07-28 19:39:42 +00:00
def fscore(self) -> float:
p = self.precision
r = self.recall
return 2 * ((p * r) / (p + r + 1e-100))
2020-07-28 19:39:42 +00:00
def to_dict(self) -> Dict[str, float]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
return {"p": self.precision, "r": self.recall, "f": self.fscore}
2020-07-12 12:03:23 +00:00
class ROCAUCScore:
"""An AUC ROC score. This is only defined for binary classification.
Use the method is_binary before calculating the score, otherwise it
may throw an error."""
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
2020-07-29 08:39:33 +00:00
def __init__(self) -> None:
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
self.golds = []
self.cands = []
self.saved_score = 0.0
self.saved_score_at_len = 0
2020-07-28 19:39:42 +00:00
def score_set(self, cand, gold) -> None:
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
self.cands.append(cand)
self.golds.append(gold)
def is_binary(self):
return len(np.unique(self.golds)) == 2
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
@property
def score(self):
if not self.is_binary():
raise ValueError(Errors.E165.format(label=set(self.golds)))
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
if len(self.golds) == self.saved_score_at_len:
return self.saved_score
self.saved_score = _roc_auc_score(self.golds, self.cands)
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
self.saved_score_at_len = len(self.golds)
return self.saved_score
2020-07-12 12:03:23 +00:00
class Scorer:
2019-05-24 12:06:04 +00:00
"""Compute evaluation scores."""
2020-07-28 19:39:42 +00:00
def __init__(
self,
nlp: Optional["Language"] = None,
default_lang: str = "xx",
default_pipeline: Iterable[str] = DEFAULT_PIPELINE,
2020-07-28 19:39:42 +00:00
**cfg,
) -> None:
2019-05-24 12:06:04 +00:00
"""Initialize the Scorer.
DOCS: https://spacy.io/api/scorer#init
2019-05-24 12:06:04 +00:00
"""
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
self.nlp = nlp
self.cfg = cfg
if not nlp:
2020-07-28 19:39:42 +00:00
nlp = get_lang_class(default_lang)()
for pipe in default_pipeline:
nlp.add_pipe(pipe)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
self.nlp = nlp
2020-07-28 19:39:42 +00:00
def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""Evaluate a list of Examples.
examples (Iterable[Example]): The predicted annotations + correct annotations.
RETURNS (Dict): A dictionary of scores.
2020-07-28 19:39:42 +00:00
DOCS: https://spacy.io/api/scorer#score
"""
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
scores = {}
if hasattr(self.nlp.tokenizer, "score"):
scores.update(self.nlp.tokenizer.score(examples, **self.cfg))
for name, component in self.nlp.pipeline:
if hasattr(component, "score"):
scores.update(component.score(examples, **self.cfg))
return scores
2015-03-11 01:07:03 +00:00
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
@staticmethod
def score_tokenization(examples: Iterable[Example], **cfg) -> Dict[str, Any]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""Returns accuracy and PRF scores for tokenization.
* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for token character spans
2015-03-11 01:07:03 +00:00
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
examples (Iterable[Example]): Examples to score
RETURNS (Dict[str, Any]): A dictionary containing the scores
2020-07-28 19:39:42 +00:00
token_acc/p/r/f.
DOCS: https://spacy.io/api/scorer#score_tokenization
"""
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
acc_score = PRFScore()
prf_score = PRFScore()
for example in examples:
gold_doc = example.reference
pred_doc = example.predicted
if gold_doc.has_unknown_spaces:
continue
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
align = example.alignment
gold_spans = set()
pred_spans = set()
for token in gold_doc:
if token.orth_.isspace():
continue
gold_spans.add((token.idx, token.idx + len(token)))
for token in pred_doc:
if token.orth_.isspace():
continue
pred_spans.add((token.idx, token.idx + len(token)))
if align.x2y.lengths[token.i] != 1:
acc_score.fp += 1
else:
acc_score.tp += 1
prf_score.score_set(pred_spans, gold_spans)
if len(acc_score) > 0:
return {
"token_acc": acc_score.fscore,
"token_p": prf_score.precision,
"token_r": prf_score.recall,
"token_f": prf_score.fscore,
}
else:
return {
"token_acc": None,
"token_p": None,
"token_r": None,
2021-01-05 02:41:53 +00:00
"token_f": None,
}
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
@staticmethod
2020-07-28 19:39:42 +00:00
def score_token_attr(
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Token, str], Any] = getattr,
missing_values: Set[Any] = MISSING_VALUES,
2020-07-28 19:39:42 +00:00
**cfg,
) -> Dict[str, Any]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""Returns an accuracy score for a token-level attribute.
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
2020-07-28 19:39:42 +00:00
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
getter(token, attr) should return the value of the attribute for an
individual token.
RETURNS (Dict[str, Any]): A dictionary containing the accuracy score
2020-07-28 19:39:42 +00:00
under the key attr_acc.
DOCS: https://spacy.io/api/scorer#score_token_attr
2019-07-10 09:19:28 +00:00
"""
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
tag_score = PRFScore()
for example in examples:
gold_doc = example.reference
pred_doc = example.predicted
align = example.alignment
gold_tags = set()
missing_indices = set()
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
for gold_i, token in enumerate(gold_doc):
value = getter(token, attr)
if value not in missing_values:
gold_tags.add((gold_i, getter(token, attr)))
else:
missing_indices.add(gold_i)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
pred_tags = set()
for token in pred_doc:
if token.orth_.isspace():
continue
if align.x2y.lengths[token.i] == 1:
gold_i = align.x2y[token.i].dataXd[0, 0]
if gold_i not in missing_indices:
pred_tags.add((gold_i, getter(token, attr)))
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
tag_score.score_set(pred_tags, gold_tags)
score_key = f"{attr}_acc"
if len(tag_score) == 0:
return {score_key: None}
else:
return {score_key: tag_score.fscore}
2019-07-10 09:19:28 +00:00
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
@staticmethod
2020-07-28 19:39:42 +00:00
def score_token_attr_per_feat(
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Token, str], Any] = getattr,
missing_values: Set[Any] = MISSING_VALUES,
2020-07-28 19:39:42 +00:00
**cfg,
) -> Dict[str, Any]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""Return PRF scores per feat for a token attribute in UFEATS format.
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
2020-07-28 19:39:42 +00:00
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
getter(token, attr) should return the value of the attribute for an
individual token.
RETURNS (dict): A dictionary containing the per-feat PRF scores under
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
the key attr_per_feat.
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
"""
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
per_feat = {}
for example in examples:
pred_doc = example.predicted
gold_doc = example.reference
align = example.alignment
gold_per_feat = {}
missing_indices = set()
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
for gold_i, token in enumerate(gold_doc):
value = getter(token, attr)
morph = gold_doc.vocab.strings[value]
if value not in missing_values and morph != Morphology.EMPTY_MORPH:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
for feat in morph.split(Morphology.FEATURE_SEP):
field, values = feat.split(Morphology.FIELD_SEP)
if field not in per_feat:
per_feat[field] = PRFScore()
if field not in gold_per_feat:
gold_per_feat[field] = set()
gold_per_feat[field].add((gold_i, feat))
else:
missing_indices.add(gold_i)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
pred_per_feat = {}
for token in pred_doc:
if token.orth_.isspace():
continue
if align.x2y.lengths[token.i] == 1:
gold_i = align.x2y[token.i].dataXd[0, 0]
if gold_i not in missing_indices:
value = getter(token, attr)
morph = gold_doc.vocab.strings[value]
2021-01-05 02:41:53 +00:00
if (
value not in missing_values
and morph != Morphology.EMPTY_MORPH
):
for feat in morph.split(Morphology.FEATURE_SEP):
field, values = feat.split(Morphology.FIELD_SEP)
if field not in per_feat:
per_feat[field] = PRFScore()
if field not in pred_per_feat:
pred_per_feat[field] = set()
pred_per_feat[field].add((gold_i, feat))
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
for field in per_feat:
per_feat[field].score_set(
pred_per_feat.get(field, set()), gold_per_feat.get(field, set())
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
)
score_key = f"{attr}_per_feat"
if any([len(v) for v in per_feat.values()]):
result = {k: v.to_dict() for k, v in per_feat.items()}
return {score_key: result}
else:
return {score_key: None}
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
@staticmethod
2020-07-28 19:39:42 +00:00
def score_spans(
examples: Iterable[Example],
attr: str,
*,
2020-08-17 14:45:24 +00:00
getter: Callable[[Doc, str], Iterable[Span]] = getattr,
has_annotation: Optional[Callable[[Doc], bool]] = None,
labeled: bool = True,
allow_overlap: bool = False,
2020-07-28 19:39:42 +00:00
**cfg,
) -> Dict[str, Any]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""Returns PRF scores for labeled spans.
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
2020-08-17 14:45:24 +00:00
getter (Callable[[Doc, str], Iterable[Span]]): Defaults to getattr. If
provided, getter(doc, attr) should return the spans for the
individual doc.
2021-02-26 13:27:10 +00:00
has_annotation (Optional[Callable[[Doc], bool]]) should return whether a `Doc`
has annotation for this `attr`. Docs without annotation are skipped for
scoring purposes.
labeled (bool): Whether or not to include label information in
the evaluation. If set to 'False', two spans will be considered
equal if their start and end match, irrespective of their label.
allow_overlap (bool): Whether or not to allow overlapping spans.
If set to 'False', the alignment will automatically resolve conflicts.
2020-07-28 19:39:42 +00:00
RETURNS (Dict[str, Any]): A dictionary containing the PRF scores under
the keys attr_p/r/f and the per-type PRF scores under attr_per_type.
DOCS: https://spacy.io/api/scorer#score_spans
2019-05-24 12:06:04 +00:00
"""
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
score = PRFScore()
score_per_type = dict()
for example in examples:
pred_doc = example.predicted
gold_doc = example.reference
2021-02-26 13:27:10 +00:00
# Option to handle docs without annotation for this attribute
if has_annotation is not None:
if not has_annotation(gold_doc):
continue
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
# Find all labels in gold and doc
labels = set(
[k.label_ for k in getter(gold_doc, attr)]
+ [k.label_ for k in getter(pred_doc, attr)]
)
# Set up all labels for per type scoring and prepare gold per type
gold_per_type = {label: set() for label in labels}
for label in labels:
if label not in score_per_type:
score_per_type[label] = PRFScore()
# Find all predidate labels, for all and per type
gold_spans = set()
pred_spans = set()
for span in getter(gold_doc, attr):
if labeled:
gold_span = (span.label_, span.start, span.end - 1)
else:
gold_span = (span.start, span.end - 1)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
gold_spans.add(gold_span)
gold_per_type[span.label_].add(gold_span)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
pred_per_type = {label: set() for label in labels}
for span in example.get_aligned_spans_x2y(getter(pred_doc, attr), allow_overlap):
if labeled:
pred_span = (span.label_, span.start, span.end - 1)
else:
pred_span = (span.start, span.end - 1)
pred_spans.add(pred_span)
pred_per_type[span.label_].add(pred_span)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
# Scores per label
if labeled:
for k, v in score_per_type.items():
if k in pred_per_type:
v.score_set(pred_per_type[k], gold_per_type[k])
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
# Score for all labels
score.score_set(pred_spans, gold_spans)
# Assemble final result
final_scores = {
f"{attr}_p": None,
f"{attr}_r": None,
f"{attr}_f": None,
}
if labeled:
final_scores[f"{attr}_per_type"] = None
if len(score) > 0:
final_scores[f"{attr}_p"] = score.precision
final_scores[f"{attr}_r"] = score.recall
final_scores[f"{attr}_f"] = score.fscore
if labeled:
final_scores[f"{attr}_per_type"] = {k: v.to_dict() for k, v in score_per_type.items()}
return final_scores
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
@staticmethod
def score_cats(
2020-07-28 19:39:42 +00:00
examples: Iterable[Example],
attr: str,
*,
2020-07-29 08:39:33 +00:00
getter: Callable[[Doc, str], Any] = getattr,
labels: Iterable[str] = SimpleFrozenList(),
2020-07-28 19:39:42 +00:00
multi_label: bool = True,
positive_label: Optional[str] = None,
threshold: Optional[float] = None,
2020-07-28 19:39:42 +00:00
**cfg,
) -> Dict[str, Any]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""Returns PRF and ROC AUC scores for a doc-level attribute with a
dict with scores for each label like Doc.cats. The reported overall
score depends on the scorer settings.
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
2020-07-29 08:39:33 +00:00
getter (Callable[[Doc, str], Any]): Defaults to getattr. If provided,
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
getter(doc, attr) should return the values for the individual doc.
labels (Iterable[str]): The set of possible labels. Defaults to [].
multi_label (bool): Whether the attribute allows multiple labels.
Defaults to True.
positive_label (str): The positive label for a binary task with
exclusive classes. Defaults to None.
threshold (float): Cutoff to consider a prediction "positive". Defaults
to 0.5 for multi-label, and 0.0 (i.e. whatever's highest scoring)
otherwise.
2020-07-28 19:39:42 +00:00
RETURNS (Dict[str, Any]): A dictionary containing the scores, with
inapplicable scores as None:
for all:
attr_score (one of attr_micro_f / attr_macro_f / attr_macro_auc),
attr_score_desc (text description of the overall score),
attr_micro_p,
attr_micro_r,
attr_micro_f,
attr_macro_p,
attr_macro_r,
attr_macro_f,
attr_macro_auc,
attr_f_per_type,
attr_auc_per_type
2020-07-28 19:39:42 +00:00
DOCS: https://spacy.io/api/scorer#score_cats
2019-05-24 12:06:04 +00:00
"""
if threshold is None:
threshold = 0.5 if multi_label else 0.0
f_per_type = {label: PRFScore() for label in labels}
auc_per_type = {label: ROCAUCScore() for label in labels}
labels = set(labels)
if labels:
for eg in examples:
labels.update(eg.predicted.cats.keys())
labels.update(eg.reference.cats.keys())
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
for example in examples:
# Through this loop, None in the gold_cats indicates missing label.
pred_cats = getter(example.predicted, attr)
gold_cats = getter(example.reference, attr)
for label in labels:
pred_score = pred_cats.get(label, 0.0)
gold_score = gold_cats.get(label, 0.0)
if gold_score is not None:
auc_per_type[label].score_set(pred_score, gold_score)
if multi_label:
for label in labels:
pred_score = pred_cats.get(label, 0.0)
gold_score = gold_cats.get(label, 0.0)
if gold_score is not None:
if pred_score >= threshold and gold_score > 0:
f_per_type[label].tp += 1
elif pred_score >= threshold and gold_score == 0:
f_per_type[label].fp += 1
elif pred_score < threshold and gold_score > 0:
f_per_type[label].fn += 1
elif pred_cats and gold_cats:
# Get the highest-scoring for each.
pred_label, pred_score = max(pred_cats.items(), key=lambda it: it[1])
gold_label, gold_score = max(gold_cats.items(), key=lambda it: it[1])
if gold_score is not None:
if pred_label == gold_label and pred_score >= threshold:
f_per_type[pred_label].tp += 1
else:
f_per_type[gold_label].fn += 1
if pred_score >= threshold:
f_per_type[pred_label].fp += 1
elif gold_cats:
gold_label, gold_score = max(gold_cats, key=lambda it: it[1])
if gold_score is not None and gold_score > 0:
f_per_type[gold_label].fn += 1
elif pred_cats:
pred_label, pred_score = max(pred_cats.items(), key=lambda it: it[1])
if pred_score >= threshold:
f_per_type[pred_label].fp += 1
micro_prf = PRFScore()
for label_prf in f_per_type.values():
micro_prf.tp += label_prf.tp
micro_prf.fn += label_prf.fn
micro_prf.fp += label_prf.fp
n_cats = len(f_per_type) + 1e-100
macro_p = sum(prf.precision for prf in f_per_type.values()) / n_cats
macro_r = sum(prf.recall for prf in f_per_type.values()) / n_cats
macro_f = sum(prf.fscore for prf in f_per_type.values()) / n_cats
# Limit macro_auc to those labels with gold annotations,
# but still divide by all cats to avoid artificial boosting of datasets with missing labels
2021-01-05 02:41:53 +00:00
macro_auc = (
sum(auc.score if auc.is_binary() else 0.0 for auc in auc_per_type.values())
/ n_cats
)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
results = {
2020-07-28 19:39:42 +00:00
f"{attr}_score": None,
f"{attr}_score_desc": None,
f"{attr}_micro_p": micro_prf.precision,
f"{attr}_micro_r": micro_prf.recall,
f"{attr}_micro_f": micro_prf.fscore,
f"{attr}_macro_p": macro_p,
f"{attr}_macro_r": macro_r,
f"{attr}_macro_f": macro_f,
f"{attr}_macro_auc": macro_auc,
2020-07-28 19:39:42 +00:00
f"{attr}_f_per_type": {k: v.to_dict() for k, v in f_per_type.items()},
2021-01-05 02:41:53 +00:00
f"{attr}_auc_per_type": {
k: v.score if v.is_binary() else None for k, v in auc_per_type.items()
},
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
}
if len(labels) == 2 and not multi_label and positive_label:
2020-08-09 20:36:23 +00:00
positive_label_f = results[f"{attr}_f_per_type"][positive_label]["f"]
results[f"{attr}_score"] = positive_label_f
2020-07-28 19:39:42 +00:00
results[f"{attr}_score_desc"] = f"F ({positive_label})"
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
elif not multi_label:
2020-07-28 19:39:42 +00:00
results[f"{attr}_score"] = results[f"{attr}_macro_f"]
results[f"{attr}_score_desc"] = "macro F"
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
else:
2020-07-28 19:39:42 +00:00
results[f"{attr}_score"] = results[f"{attr}_macro_auc"]
results[f"{attr}_score_desc"] = "macro AUC"
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
return results
@staticmethod
def score_links(
examples: Iterable[Example], *, negative_labels: Iterable[str]
) -> Dict[str, Any]:
"""Returns PRF for predicted links on the entity level.
To disentangle the performance of the NEL from the NER,
this method only evaluates NEL links for entities that overlap
between the gold reference and the predictions.
examples (Iterable[Example]): Examples to score
negative_labels (Iterable[str]): The string values that refer to no annotation (e.g. "NIL")
RETURNS (Dict[str, Any]): A dictionary containing the scores.
DOCS: https://spacy.io/api/scorer#score_links
"""
f_per_type = {}
for example in examples:
gold_ent_by_offset = {}
for gold_ent in example.reference.ents:
gold_ent_by_offset[(gold_ent.start_char, gold_ent.end_char)] = gold_ent
for pred_ent in example.predicted.ents:
gold_span = gold_ent_by_offset.get(
(pred_ent.start_char, pred_ent.end_char), None
)
if gold_span is not None:
label = gold_span.label_
if label not in f_per_type:
f_per_type[label] = PRFScore()
gold = gold_span.kb_id_
# only evaluating entities that overlap between gold and pred,
# to disentangle the performance of the NEL from the NER
if gold is not None:
pred = pred_ent.kb_id_
if gold in negative_labels and pred in negative_labels:
# ignore true negatives
pass
elif gold == pred:
f_per_type[label].tp += 1
elif gold in negative_labels:
f_per_type[label].fp += 1
elif pred in negative_labels:
f_per_type[label].fn += 1
else:
# a wrong prediction (e.g. Q42 != Q3) counts as both a FP as well as a FN
f_per_type[label].fp += 1
f_per_type[label].fn += 1
micro_prf = PRFScore()
for label_prf in f_per_type.values():
micro_prf.tp += label_prf.tp
micro_prf.fn += label_prf.fn
micro_prf.fp += label_prf.fp
n_labels = len(f_per_type) + 1e-100
macro_p = sum(prf.precision for prf in f_per_type.values()) / n_labels
macro_r = sum(prf.recall for prf in f_per_type.values()) / n_labels
macro_f = sum(prf.fscore for prf in f_per_type.values()) / n_labels
results = {
f"nel_score": micro_prf.fscore,
f"nel_score_desc": "micro F",
f"nel_micro_p": micro_prf.precision,
f"nel_micro_r": micro_prf.recall,
f"nel_micro_f": micro_prf.fscore,
f"nel_macro_p": macro_p,
f"nel_macro_r": macro_r,
f"nel_macro_f": macro_f,
f"nel_f_per_type": {k: v.to_dict() for k, v in f_per_type.items()},
}
return results
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
@staticmethod
def score_deps(
2020-07-28 19:39:42 +00:00
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Token, str], Any] = getattr,
head_attr: str = "head",
2020-08-17 14:45:24 +00:00
head_getter: Callable[[Token, str], Token] = getattr,
ignore_labels: Iterable[str] = SimpleFrozenList(),
missing_values: Set[Any] = MISSING_VALUES,
2020-07-28 19:39:42 +00:00
**cfg,
) -> Dict[str, Any]:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""Returns the UAS, LAS, and LAS per type scores for dependency
parses.
examples (Iterable[Example]): Examples to score
attr (str): The attribute containing the dependency label.
2020-07-28 19:39:42 +00:00
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
getter(token, attr) should return the value of the attribute for an
individual token.
head_attr (str): The attribute containing the head token. Defaults to
'head'.
2020-08-17 14:45:24 +00:00
head_getter (Callable[[Token, str], Token]): Defaults to getattr. If provided,
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
head_getter(token, attr) should return the value of the head for an
individual token.
ignore_labels (Tuple): Labels to ignore while scoring (e.g., punct).
2020-07-28 19:39:42 +00:00
RETURNS (Dict[str, Any]): A dictionary containing the scores:
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
attr_uas, attr_las, and attr_las_per_type.
2020-07-28 19:39:42 +00:00
DOCS: https://spacy.io/api/scorer#score_deps
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
"""
unlabelled = PRFScore()
labelled = PRFScore()
labelled_per_dep = dict()
missing_indices = set()
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
for example in examples:
gold_doc = example.reference
pred_doc = example.predicted
align = example.alignment
gold_deps = set()
gold_deps_per_dep = {}
for gold_i, token in enumerate(gold_doc):
dep = getter(token, attr)
head = head_getter(token, head_attr)
if dep not in missing_values:
if dep not in ignore_labels:
gold_deps.add((gold_i, head.i, dep))
if dep not in labelled_per_dep:
labelled_per_dep[dep] = PRFScore()
if dep not in gold_deps_per_dep:
gold_deps_per_dep[dep] = set()
gold_deps_per_dep[dep].add((gold_i, head.i, dep))
else:
missing_indices.add(gold_i)
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
pred_deps = set()
pred_deps_per_dep = {}
for token in pred_doc:
if token.orth_.isspace():
continue
if align.x2y.lengths[token.i] != 1:
gold_i = None
else:
gold_i = align.x2y[token.i].dataXd[0, 0]
if gold_i not in missing_indices:
dep = getter(token, attr)
head = head_getter(token, head_attr)
if dep not in ignore_labels and token.orth_.strip():
if align.x2y.lengths[head.i] == 1:
gold_head = align.x2y[head.i].dataXd[0, 0]
else:
gold_head = None
# None is indistinct, so we can't just add it to the set
# Multiple (None, None) deps are possible
if gold_i is None or gold_head is None:
unlabelled.fp += 1
labelled.fp += 1
else:
pred_deps.add((gold_i, gold_head, dep))
if dep not in labelled_per_dep:
labelled_per_dep[dep] = PRFScore()
if dep not in pred_deps_per_dep:
pred_deps_per_dep[dep] = set()
pred_deps_per_dep[dep].add((gold_i, gold_head, dep))
Refactor the Scorer to improve flexibility (#5731) * Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
2020-07-25 10:53:02 +00:00
labelled.score_set(pred_deps, gold_deps)
for dep in labelled_per_dep:
labelled_per_dep[dep].score_set(
pred_deps_per_dep.get(dep, set()), gold_deps_per_dep.get(dep, set())
)
unlabelled.score_set(
set(item[:2] for item in pred_deps), set(item[:2] for item in gold_deps)
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
)
if len(unlabelled) > 0:
return {
f"{attr}_uas": unlabelled.fscore,
f"{attr}_las": labelled.fscore,
f"{attr}_las_per_type": {
k: v.to_dict() for k, v in labelled_per_dep.items()
},
}
else:
return {
f"{attr}_uas": None,
f"{attr}_las": None,
f"{attr}_las_per_type": None,
}
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
def get_ner_prf(examples: Iterable[Example]) -> Dict[str, Any]:
2021-01-05 02:41:53 +00:00
"""Compute micro-PRF and per-entity PRF scores for a sequence of examples."""
score_per_type = defaultdict(PRFScore)
for eg in examples:
if not eg.y.has_annotation("ENT_IOB"):
continue
golds = {(e.label_, e.start, e.end) for e in eg.y.ents}
align_x2y = eg.alignment.x2y
for pred_ent in eg.x.ents:
if pred_ent.label_ not in score_per_type:
score_per_type[pred_ent.label_] = PRFScore()
indices = align_x2y[pred_ent.start : pred_ent.end].dataXd.ravel()
if len(indices):
g_span = eg.y[indices[0] : indices[-1] + 1]
# Check we aren't missing annotation on this span. If so,
# our prediction is neither right nor wrong, we just
# ignore it.
if all(token.ent_iob != 0 for token in g_span):
key = (pred_ent.label_, indices[0], indices[-1] + 1)
if key in golds:
score_per_type[pred_ent.label_].tp += 1
golds.remove(key)
else:
score_per_type[pred_ent.label_].fp += 1
for label, start, end in golds:
score_per_type[label].fn += 1
totals = PRFScore()
for prf in score_per_type.values():
totals += prf
if len(totals) > 0:
return {
"ents_p": totals.precision,
"ents_r": totals.recall,
"ents_f": totals.fscore,
"ents_per_type": {k: v.to_dict() for k, v in score_per_type.items()},
}
else:
return {
"ents_p": None,
"ents_r": None,
"ents_f": None,
"ents_per_type": None,
}
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
# The following implementation of roc_auc_score() is adapted from
# scikit-learn, which is distributed under the New BSD License.
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
# Copyright (c) 20072019 The scikit-learn developers.
# See licenses/3rd_party_licenses.txt
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
def _roc_auc_score(y_true, y_score):
"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
from prediction scores.
Note: this implementation is restricted to the binary classification task
Parameters
----------
y_true : array, shape = [n_samples] or [n_samples, n_classes]
True binary labels or binary label indicators.
The multiclass case expects shape = [n_samples] and labels
with values in ``range(n_classes)``.
y_score : array, shape = [n_samples] or [n_samples, n_classes]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers). For binary
y_true, y_score is supposed to be the score of the class with greater
label. The multiclass case expects shape = [n_samples, n_classes]
where the scores correspond to probability estimates.
Returns
-------
auc : float
References
----------
.. [1] `Wikipedia entry for the Receiver operating characteristic
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_
.. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition
Letters, 2006, 27(8):861-874.
.. [3] `Analyzing a portion of the ROC curve. McClish, 1989
<https://www.ncbi.nlm.nih.gov/pubmed/2668680>`_
"""
if len(np.unique(y_true)) != 2:
raise ValueError(Errors.E165.format(label=np.unique(y_true)))
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
fpr, tpr, _ = _roc_curve(y_true, y_score)
return _auc(fpr, tpr)
def _roc_curve(y_true, y_score):
"""Compute Receiver operating characteristic (ROC)
Note: this implementation is restricted to the binary classification task.
Parameters
----------
y_true : array, shape = [n_samples]
True binary labels. If labels are not either {-1, 1} or {0, 1}, then
pos_label should be explicitly given.
y_score : array, shape = [n_samples]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers).
Returns
-------
fpr : array, shape = [>2]
Increasing false positive rates such that element i is the false
positive rate of predictions with score >= thresholds[i].
tpr : array, shape = [>2]
Increasing true positive rates such that element i is the true
positive rate of predictions with score >= thresholds[i].
thresholds : array, shape = [n_thresholds]
Decreasing thresholds on the decision function used to compute
fpr and tpr. `thresholds[0]` represents no instances being predicted
and is arbitrarily set to `max(y_score) + 1`.
Notes
-----
Since the thresholds are sorted from low to high values, they
are reversed upon returning them to ensure they correspond to both ``fpr``
and ``tpr``, which are sorted in reversed order during their calculation.
References
----------
.. [1] `Wikipedia entry for the Receiver operating characteristic
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_
.. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition
Letters, 2006, 27(8):861-874.
"""
fps, tps, thresholds = _binary_clf_curve(y_true, y_score)
# Add an extra threshold position
# to make sure that the curve starts at (0, 0)
tps = np.r_[0, tps]
fps = np.r_[0, fps]
thresholds = np.r_[thresholds[0] + 1, thresholds]
if fps[-1] <= 0:
fpr = np.repeat(np.nan, fps.shape)
else:
fpr = fps / fps[-1]
if tps[-1] <= 0:
tpr = np.repeat(np.nan, tps.shape)
else:
tpr = tps / tps[-1]
return fpr, tpr, thresholds
def _binary_clf_curve(y_true, y_score):
"""Calculate true and false positives per binary classification threshold.
Parameters
----------
y_true : array, shape = [n_samples]
True targets of binary classification
y_score : array, shape = [n_samples]
Estimated probabilities or decision function
Returns
-------
fps : array, shape = [n_thresholds]
A count of false positives, at index i being the number of negative
samples assigned a score >= thresholds[i]. The total number of
negative samples is equal to fps[-1] (thus true negatives are given by
fps[-1] - fps).
tps : array, shape = [n_thresholds <= len(np.unique(y_score))]
An increasing count of true positives, at index i being the number
of positive samples assigned a score >= thresholds[i]. The total
number of positive samples is equal to tps[-1] (thus false negatives
are given by tps[-1] - tps).
thresholds : array, shape = [n_thresholds]
Decreasing score values.
"""
2019-09-18 17:56:55 +00:00
pos_label = 1.0
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
y_true = np.ravel(y_true)
y_score = np.ravel(y_score)
# make y_true a boolean vector
2019-09-18 17:56:55 +00:00
y_true = y_true == pos_label
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
# sort scores and corresponding truth values
desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
y_score = y_score[desc_score_indices]
y_true = y_true[desc_score_indices]
2019-09-18 17:56:55 +00:00
weight = 1.0
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
# y_score typically has many tied values. Here we extract
# the indices associated with the distinct values. We also
# concatenate a value for the end of the curve.
distinct_value_indices = np.where(np.diff(y_score))[0]
threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1]
# accumulate the true positives with decreasing threshold
tps = _stable_cumsum(y_true * weight)[threshold_idxs]
fps = 1 + threshold_idxs - tps
return fps, tps, y_score[threshold_idxs]
def _stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
"""Use high precision for cumsum and check that final value matches sum
Parameters
----------
arr : array-like
To be cumulatively summed as flat
axis : int, optional
Axis along which the cumulative sum is computed.
The default (None) is to compute the cumsum over the flattened array.
rtol : float
Relative tolerance, see ``np.allclose``
atol : float
Absolute tolerance, see ``np.allclose``
"""
out = np.cumsum(arr, axis=axis, dtype=np.float64)
expected = np.sum(arr, axis=axis, dtype=np.float64)
2019-09-18 17:56:55 +00:00
if not np.all(
np.isclose(
out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True
)
):
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
raise ValueError(Errors.E163)
return out
def _auc(x, y):
"""Compute Area Under the Curve (AUC) using the trapezoidal rule
This is a general function, given points on a curve. For computing the
area under the ROC-curve, see :func:`roc_auc_score`.
Parameters
----------
x : array, shape = [n]
x coordinates. These must be either monotonic increasing or monotonic
decreasing.
y : array, shape = [n]
y coordinates.
Returns
-------
auc : float
"""
x = np.ravel(x)
y = np.ravel(y)
direction = 1
dx = np.diff(x)
if np.any(dx < 0):
if np.all(dx <= 0):
direction = -1
else:
2020-10-04 09:16:31 +00:00
raise ValueError(Errors.E164.format(x=x))
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
area = direction * np.trapz(y, x)
if isinstance(area, np.memmap):
# Reductions such as .sum used internally in np.trapz do not return a
# scalar by default for numpy.memmap instances contrary to
# regular numpy.ndarray instances.
area = area.dtype.type(area)
return area