spaCy/website/docs/usage/_data.json

335 lines
14 KiB
JSON
Raw Normal View History

2016-10-31 18:04:15 +00:00
{
"sidebar": {
"Get started": {
"Installation": "./",
"Lightning tour": "lightning-tour"
},
"Workflows": {
"Loading the pipeline": "language-processing-pipeline",
"Processing text": "processing-text",
"spaCy's data model": "data-model",
"POS tagging": "pos-tagging",
2016-10-31 18:04:15 +00:00
"Using the parse": "dependency-parse",
"Entity recognition": "entity-recognition",
2016-10-31 18:04:15 +00:00
"Custom pipelines": "customizing-pipeline",
"Rule-based matching": "rule-based-matching",
"Word vectors": "word-vectors-similarities",
"Deep learning": "deep-learning",
"Custom tokenization": "customizing-tokenizer",
"Training": "training"
2016-10-31 18:04:15 +00:00
},
"Examples": {
"Tutorials": "tutorials",
"Showcase": "showcase"
}
},
"index": {
"title": "Install spaCy",
"next": "lightning-tour"
},
"lightning-tour": {
"title": "Lightning tour"
},
"language-processing-pipeline": {
"title": "Loading a language processing pipeline",
"next": "processing-text"
},
"customizing-pipeline": {
"title": "Customizing the pipeline",
"next": "customizing-tokenizer"
2016-10-31 18:04:15 +00:00
},
"processing-text": {
"title": "Processing text",
"next": "data-model"
},
"data-model": {
"title": "Understanding spaCy's data model"
},
"dependency-parse": {
"title": "Using the dependency parse",
"next": "entity-recognition"
},
"entity-recognition": {
"title": "Entity recognition",
"next": "rule-based-matching"
2016-10-31 18:04:15 +00:00
},
"rule-based-matching": {
"title": "Rule-based matching"
},
"word-vectors-similarities": {
"title": "Using word vectors and semantic similarities"
},
"deep-learning": {
"title": "Hooking a deep learning model into spaCy"
},
"customizing-tokenizer": {
"title": "Customizing the tokenizer",
"next": "training"
},
"training": {
"title": "Training the tagger, parser and entity recognizer"
},
"pos-tagging": {
"title": "Part-of-speech tagging",
"next": "dependency-parse"
},
2016-10-31 18:04:15 +00:00
"showcase": {
"title": "Showcase",
"libraries": {
"spacy-nlp": {
"url": "https://github.com/kengz/spacy-nlp",
"author": "Wah Loon Keng",
2016-11-03 12:06:05 +00:00
"description": "Expose spaCy NLP text parsing to Node.js (and other languages) via Socket.IO."
2016-10-31 18:04:15 +00:00
},
2016-11-06 12:46:20 +00:00
"spacy-api-docker": {
"url": "https://github.com/jgontrum/spacy-api-docker",
"author": "Johannes Gontrum",
"description": "spaCy accessed by a REST API, wrapped in a Docker container."
},
2016-10-31 18:04:15 +00:00
"textacy": {
"url": "https://github.com/chartbeat-labs/textacy",
"author": " Burton DeWilde (Chartbeat)",
2016-11-03 12:06:05 +00:00
"description": "Higher-level NLP built on spaCy."
2016-10-31 18:04:15 +00:00
},
"visual-qa": {
"url": "https://github.com/avisingh599/visual-qa",
"author": "Avi Singh",
2016-11-03 12:06:05 +00:00
"description": "Keras-based LSTM/CNN models for Visual Question Answering."
2016-12-18 17:18:18 +00:00
},
"rasa_nlu": {
"url": "https://github.com/golastmile/rasa_nlu",
"author": "LASTMILE",
"description": "High level APIs for building your own language parser using existing NLP and ML libraries."
2016-10-31 18:04:15 +00:00
}
},
"visualizations": {
"displaCy": {
"url": "https://demos.explosion.ai/displacy",
"author": "Ines Montani",
2016-11-03 12:06:05 +00:00
"description": "An open-source NLP visualiser for the modern web.",
2016-10-31 18:04:15 +00:00
"image": "displacy.jpg"
},
"displaCy ENT": {
"url": "https://demos.explosion.ai/displacy-ent",
"author": "Ines Montani",
2016-11-03 12:06:05 +00:00
"description": "An open-source named entity visualiser for the modern web.",
2016-10-31 18:04:15 +00:00
"image": "displacy-ent.jpg"
}
},
"products": {
"sense2vec": {
"url": "https://demos.explosion.ai/sense2vec",
"author": "Matthew Honnibal and Ines Montani",
2016-11-03 12:06:05 +00:00
"description": "Semantic analysis of the Reddit hivemind.",
2016-10-31 18:04:15 +00:00
"image": "sense2vec.jpg"
},
2016-11-03 11:43:55 +00:00
"TruthBot": {
"url": "http://summerscope.github.io/govhack/2016/truthbot/",
"author": "Team Truthbot",
"description": "The world's first artificially intelligent fact checking robot.",
"image": "truthbot.jpg"
},
2016-10-31 18:04:15 +00:00
"Laice": {
"url": "https://github.com/kendricktan/laice",
"author": "Kendrick Tan",
2016-11-03 12:06:05 +00:00
"description": "Train your own Natural Language Processor from a browser.",
2016-10-31 18:04:15 +00:00
"image": "laice.jpg"
},
"FoxType": {
"url": "https://foxtype.com",
2016-11-03 12:06:05 +00:00
"description": "Smart tools for writers.",
2016-10-31 18:04:15 +00:00
"image": "foxtype.jpg"
},
"Kip": {
"url": "https://kipthis.com",
2016-11-03 12:06:05 +00:00
"description": "An AI chat assistant for group shopping.",
2016-10-31 18:04:15 +00:00
"image": "kip.jpg"
},
"Indico": {
"url": "https://indico.io",
2016-11-03 12:06:05 +00:00
"description": "Text and image analysis powered by Machine Learning.",
2016-10-31 18:04:15 +00:00
"image": "indico.jpg"
},
"TextAnalysisOnline": {
"url": "http://textanalysisonline.com",
"description": "Online tool for spaCy's tokenizer, parser, NER and more.",
"image": "textanalysis.jpg"
}
},
"books": {
"Introduction to Machine Learning with Python: A Guide for Data Scientists": {
"url": "https://books.google.de/books?id=vbQlDQAAQBAJ",
"author": "Andreas C. Müller and Sarah Guido (O'Reilly, 2016)",
"description": "Andreas is a lead developer of Scikit-Learn, and Sarah is a lead data scientist at Mashable. We're proud to get a mention."
}
},
"research": {
2016-12-18 17:18:18 +00:00
"Distributional semantics for understanding spoken meal descriptions": {
"url": "https://www.semanticscholar.org/paper/Distributional-semantics-for-understanding-spoken-Korpusik-Huang/5f55c5535e80d3e5ed7f1f0b89531e32725faff5",
"author": "Mandy Korpusik et al. (2016)"
},
2016-10-31 18:04:15 +00:00
"Refactoring the Genia Event Extraction Shared Task Toward a General Framework for IE-Driven KB Development": {
"url": "https://www.semanticscholar.org/paper/Refactoring-the-Genia-Event-Extraction-Shared-Task-Kim-Wang/06d94b64a7bd2d3433f57caddad5084435d6a91f",
"author": "Jin-Dong Kim et al. (2016)"
},
"Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec": {
"url": "https://www.semanticscholar.org/paper/Mixing-Dirichlet-Topic-Models-and-Word-Embeddings-Moody/bf8116e06f7b498c6abfbf97aeb67d0838c08609",
"author": "Christopher E. Moody (2016)"
},
"Predicting Pre-click Quality for Native Advertisements": {
"url": "https://www.semanticscholar.org/paper/Predicting-Pre-click-Quality-for-Native-Zhou-Redi/564985430ff2fbc3a9daa9c2af8997b7f5046da8",
"author": "Ke Zhou et al. (2016)"
},
"Threat detection in online discussions": {
"url": "https://www.semanticscholar.org/paper/Threat-detection-in-online-discussions-Wester-%C3%98vrelid/f4150e2fb4d8646ebc2ea84f1a86afa1b593239b",
"author": "Aksel Wester et al. (2016)"
},
"The language of mental health problems in social media": {
"url": "https://www.semanticscholar.org/paper/The-language-of-mental-health-problems-in-social-Gkotsis-Oellrich/537db6c2984514d92a754a591841e2e20845985a",
"author": "George Gkotsis et al. (2016)"
}
}
},
"tutorials": {
"title": "Tutorials",
"next": "showcase",
"first_steps": {
"Setting up an NLP environment with Python": {
"url": "https://shirishkadam.com/2016/10/06/setting-up-natural-language-processing-environment-with-python/",
"author": "Shirish Kadam"
},
"NLP with spaCy in 10 lines of code": {
"url": "https://github.com/cytora/pycon-nlp-in-10-lines",
"author": "Andraz Hribernik et al. (Cytora)",
"tags": [ "jupyter" ]
},
"Intro to NLP with spaCy": {
"url": "https://nicschrading.com/project/Intro-to-NLP-with-spaCy/",
"author": "J Nicolas Schrading"
},
"NLP with spaCy and IPython Notebook": {
"url": "http://blog.sharepointexperience.com/2016/01/nlp-and-sharepoint-part-1/",
"author": "Dustin Miller (SharePoint)",
"tags": [ "jupyter" ]
},
"Getting Started with spaCy": {
"url": "http://textminingonline.com/getting-started-with-spacy",
"author": "TextMiner"
},
"spaCy A fast natural language processing library": {
"url": "https://bjoernkw.com/2015/11/22/spacy-a-fast-natural-language-processing-library/",
"author": "Björn Wilmsmann"
},
"NLP (almost) From Scratch - POS Network with spaCy": {
"url": "http://sujitpal.blogspot.de/2016/07/nlp-almost-from-scratch-implementing.html",
"author": "Sujit Pal",
"tags": [ "gensim", "keras" ]
},
"NLP tasks with various libraries": {
"url": "http://clarkgrubb.com/nlp",
"author": "Clark Grubb"
},
"A very (very) short primer on spacy.io": {
"url": "http://blog.milonimrod.com/2015/10/a-very-very-short-primer-on-spacyio.html",
"author": "Nimrod Milo "
}
},
2016-11-02 11:11:17 +00:00
"deep_dives": {
2016-11-24 18:25:21 +00:00
"Modern NLP in Python What you can learn about food by analyzing a million Yelp reviews": {
"url": "http://nbviewer.jupyter.org/github/skipgram/modern-nlp-in-python/blob/master/executable/Modern_NLP_in_Python.ipynb",
"author": "Patrick Harrison (S&P Global)",
2016-11-25 01:30:14 +00:00
"tags": [ "jupyter", "gensim" ]
2016-11-24 18:25:21 +00:00
},
2016-10-31 18:04:15 +00:00
"Deep Learning with custom pipelines and Keras": {
"url": "https://explosion.ai/blog/spacy-deep-learning-keras",
"author": "Matthew Honnibal",
"tags": [ "keras", "sentiment" ]
},
"A decomposable attention model for Natural Language Inference": {
"url": "https://github.com/explosion/spaCy/tree/master/examples/keras_parikh_entailment",
"author": "Matthew Honnibal",
"tags": [ "keras", "similarity" ]
},
2016-10-31 18:04:15 +00:00
"Using the German model": {
"url": "https://explosion.ai/blog/german-model",
"author": "Wolfgang Seeker",
"tags": [ "multi-lingual" ]
},
"Sense2vec with spaCy and Gensim": {
"url": "https://explosion.ai/blog/sense2vec-with-spacy",
"author": "Matthew Honnibal",
"tags": [ "big data", "gensim" ]
},
"Building your bot's brain with Node.js and spaCy": {
"url": "https://explosion.ai/blog/chatbot-node-js-spacy",
"author": "Wah Loon Keng",
"tags": [ "bots", "node.js" ]
},
"An intent classifier with spaCy": {
"url": "http://blog.themusio.com/2016/07/18/musios-intent-classifier-2/",
"author": "Musio",
"tags": [ "bots", "keras" ]
},
"Visual Question Answering with spaCy": {
"url": "http://iamaaditya.github.io/2016/04/visual_question_answering_demo_notebook",
"author": "Aaditya Prakash",
"tags": [ "vqa", "keras" ]
}
},
"code": {
"Information extraction": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/information_extraction.py",
"author": "Matthew Honnibal",
"tags": [ "snippet" ]
},
"Neural bag of words": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/nn_text_class.py",
"author": "Matthew Honnibal",
"tags": [ "sentiment" ]
},
"Part-of-speech tagging": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/pos_tag.py",
"author": "Matthew Honnibal",
"tags": [ "pos" ]
},
"Parallel parse": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/parallel_parse.py",
"author": "Matthew Honnibal",
"tags": [ "big data" ]
},
"Inventory count": {
2016-11-01 02:06:31 +00:00
"url": "https://github.com/explosion/spaCy/tree/master/examples/inventory_count",
2016-10-31 18:04:15 +00:00
"author": "Oleg Zd"
},
"Multi-word matches": {
"url": "https://github.com/explosion/spaCy/blob/master/examples/multi_word_matches.py",
"author": "Matthew Honnibal",
"tags": [ "matcher", "out of date" ]
}
}
}
}