spaCy/spacy/tokens/spans.pyx

160 lines
4.9 KiB
Cython
Raw Normal View History

from __future__ import unicode_literals
from collections import defaultdict
import numpy
import numpy.linalg
cimport numpy as np
2015-08-26 17:20:46 +00:00
from ..structs cimport TokenC, LexemeC
2015-07-16 17:55:21 +00:00
from ..typedefs cimport flags_t, attr_t
from ..attrs cimport attr_id_t
from ..parts_of_speech cimport univ_pos_t
cdef class Span:
2015-07-08 16:53:00 +00:00
"""A slice from a Doc object."""
def __cinit__(self, Doc tokens, int start, int end, int label=0):
2015-07-09 15:30:58 +00:00
if start < 0:
start = tokens.length - start
if end < 0:
end = tokens.length - end
self._seq = tokens
self.start = start
self.end = end
self.label = label
def __richcmp__(self, Span other, int op):
# Eq
if op == 0:
return self.start < other.start
elif op == 1:
return self.start <= other.start
elif op == 2:
return self.start == other.start and self.end == other.end
elif op == 3:
return self.start != other.start or self.end != other.end
elif op == 4:
return self.start > other.start
elif op == 5:
return self.start >= other.start
def __len__(self):
if self.end < self.start:
return 0
return self.end - self.start
def __getitem__(self, int i):
2015-07-29 20:36:03 +00:00
if i < 0:
2015-07-30 00:30:24 +00:00
return self._seq[self.end + i]
else:
return self._seq[self.start + i]
def __iter__(self):
for i in range(self.start, self.end):
yield self._seq[i]
2015-07-30 00:30:24 +00:00
def merge(self, unicode tag, unicode lemma, unicode ent_type):
self._seq.merge(self[0].idx, self[-1].idx + len(self[-1]), tag, lemma, ent_type)
def similarity(self, other):
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
property vector:
def __get__(self):
return sum(t.vector for t in self if not t.is_stop) / len(self)
property vector_norm:
def __get__(self):
return numpy.linalg.norm(self.vector)
property text:
def __get__(self):
return u' '.join([t.text for t in self])
property text_with_ws:
def __get__(self):
return u''.join([t.text_with_ws for t in self])
2015-07-09 15:30:58 +00:00
property root:
"""The first ancestor of the first word of the span that has its head
outside the span.
For example:
>>> toks = nlp(u'I like New York in Autumn.')
Let's name the indices --- easier than writing "toks[4]" etc.
>>> i, like, new, york, in_, autumn, dot = range(len(toks))
The head of 'new' is 'York', and the head of 'York' is 'like'
>>> toks[new].head.orth_
'York'
>>> toks[york].head.orth_
'like'
Create a span for "New York". Its root is "York".
>>> new_york = toks[new:york+1]
>>> new_york.root.orth_
'York'
When there are multiple words with external dependencies, we take the first:
>>> toks[autumn].head.orth_, toks[dot].head.orth_
('in', like')
>>> autumn_dot = toks[autumn:]
>>> autumn_dot.root.orth_
'Autumn'
2015-05-13 19:45:19 +00:00
"""
def __get__(self):
2015-07-09 15:30:58 +00:00
# This should probably be called 'head', and the other one called
# 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/
cdef const TokenC* start = &self._seq.data[self.start]
cdef const TokenC* end = &self._seq.data[self.end]
head = start
while start <= (head + head.head) < end and head.head != 0:
head += head.head
2015-07-11 19:41:41 +00:00
return self._seq[head - self._seq.data]
2015-05-13 19:45:19 +00:00
property lefts:
"""Tokens that are to the left of the Span, whose head is within the Span."""
def __get__(self):
for token in reversed(self): # Reverse, so we get the tokens in order
for left in token.lefts:
if left.i < self.start:
yield left
2015-07-11 20:15:04 +00:00
property rights:
2015-05-13 19:45:19 +00:00
"""Tokens that are to the right of the Span, whose head is within the Span."""
def __get__(self):
for token in self:
for right in token.rights:
if right.i >= self.end:
yield right
2015-07-09 15:30:58 +00:00
property subtree:
def __get__(self):
for word in self.lefts:
yield from word.subtree
yield from self
for word in self.rights:
yield from word.subtree
property orth_:
def __get__(self):
2015-04-07 02:53:40 +00:00
return ''.join([t.string for t in self]).strip()
property lemma_:
def __get__(self):
2015-03-26 02:45:11 +00:00
return ' '.join([t.lemma_ for t in self]).strip()
property string:
def __get__(self):
return ''.join([t.string for t in self])
property label_:
def __get__(self):
return self._seq.vocab.strings[self.label]