spaCy/website/docs/api/sentencizer.md

197 lines
9.4 KiB
Markdown
Raw Normal View History

---
title: Sentencizer
tag: class
source: spacy/pipeline/sentencizer.pyx
teaser: 'Pipeline component for rule-based sentence boundary detection'
api_string_name: sentencizer
api_trainable: false
---
2020-09-24 11:15:28 +00:00
A simple pipeline component to allow custom sentence boundary detection logic
that doesn't require the dependency parse. By default, sentence segmentation is
performed by the [`DependencyParser`](/api/dependencyparser), so the
`Sentencizer` lets you implement a simpler, rule-based strategy that doesn't
require a statistical model to be loaded.
Document Assigned Attributes of Pipeline Components (#9041) * Add textcat docs * Add NER docs * Add Entity Linker docs * Add assigned fields docs for the tagger This also adds a preamble, since there wasn't one. * Add morphologizer docs * Add dependency parser docs * Update entityrecognizer docs This is a little weird because `Doc.ents` is the only thing assigned to, but it's actually a bidirectional property. * Add token fields for entityrecognizer * Fix section name * Add entity ruler docs * Add lemmatizer docs * Add sentencizer/recognizer docs * Update website/docs/api/entityrecognizer.md Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update website/docs/api/entityruler.md Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update website/docs/api/tagger.md Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update website/docs/api/entityruler.md Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update type for Doc.ents This was `Tuple[Span, ...]` everywhere but `Tuple[Span]` seems to be correct. * Run prettier * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Run prettier * Add transformers section This basically just moves and renames the "custom attributes" section from the bottom of the page to be consistent with "assigned attributes" on other pages. I looked at moving the paragraph just above the section into the section, but it includes the unrelated registry additions, so it seemed better to leave it unchanged. * Make table header consistent Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2021-09-01 10:09:39 +00:00
## Assigned Attributes {#assigned-attributes}
Calculated values will be assigned to `Token.is_sent_start`. The resulting
sentences can be accessed using `Doc.sents`.
| Location | Value |
| --------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| `Token.is_sent_start` | A boolean value indicating whether the token starts a sentence. This will be either `True` or `False` for all tokens. ~~bool~~ |
| `Doc.sents` | An iterator over sentences in the `Doc`, determined by `Token.is_sent_start` values. ~~Iterator[Span]~~ |
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config).
> #### Example
>
> ```python
> config = {"punct_chars": None}
> nlp.add_pipe("sentencizer", config=config)
> ```
| Setting | Description |
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults if not set. Defaults to `None`. ~~Optional[List[str]]~~ | `None` |
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"` ~~Optional[Callable]~~ |
```python
2020-09-12 15:05:10 +00:00
%%GITHUB_SPACY/spacy/pipeline/sentencizer.pyx
```
## Sentencizer.\_\_init\_\_ {#init tag="method"}
Initialize the sentencizer.
> #### Example
>
> ```python
2020-07-26 22:29:45 +00:00
> # Construction via add_pipe
> sentencizer = nlp.add_pipe("sentencizer")
>
> # Construction from class
> from spacy.pipeline import Sentencizer
> sentencizer = Sentencizer()
> ```
| Name | Description |
| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults. ~~Optional[List[str]]~~ |
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"` ~~Optional[Callable]~~ |
2020-07-04 12:23:10 +00:00
```python
### punct_chars defaults
['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።',
'፧', '፨', '', '', '᜶', '', '', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫',
'᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉',
'⸮', '⸼', '', '', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈',
'꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '', '', '',
'𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅',
'𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂',
'𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓',
'𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛',
'𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']
```
## Sentencizer.\_\_call\_\_ {#call tag="method"}
Apply the sentencizer on a `Doc`. Typically, this happens automatically after
the component has been added to the pipeline using
[`nlp.add_pipe`](/api/language#add_pipe).
> #### Example
>
> ```python
> from spacy.lang.en import English
>
> nlp = English()
2020-07-26 22:29:45 +00:00
> nlp.add_pipe("sentencizer")
> doc = nlp("This is a sentence. This is another sentence.")
> assert len(list(doc.sents)) == 2
> ```
2020-08-17 14:45:24 +00:00
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. ~~Doc~~ |
| **RETURNS** | The modified `Doc` with added sentence boundaries. ~~Doc~~ |
## Sentencizer.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order.
> #### Example
>
> ```python
> sentencizer = nlp.add_pipe("sentencizer")
> for doc in sentencizer.pipe(docs, batch_size=50):
> pass
> ```
2020-08-17 14:45:24 +00:00
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
## Sentencizer.to_disk {#to_disk tag="method"}
2020-10-09 08:36:06 +00:00
Save the sentencizer settings (punctuation characters) to a directory. Will
create a file `sentencizer.json`. This also happens automatically when you save
an `nlp` object with a sentencizer added to its pipeline.
> #### Example
>
> ```python
> config = {"punct_chars": [".", "?", "!", "。"]}
> sentencizer = nlp.add_pipe("sentencizer", config=config)
> sentencizer.to_disk("/path/to/sentencizer.json")
> ```
2020-08-17 14:45:24 +00:00
| Name | Description |
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a JSON file, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
## Sentencizer.from_disk {#from_disk tag="method"}
Load the sentencizer settings from a file. Expects a JSON file. This also
happens automatically when you load an `nlp` object or model with a sentencizer
added to its pipeline.
> #### Example
>
> ```python
> sentencizer = nlp.add_pipe("sentencizer")
> sentencizer.from_disk("/path/to/sentencizer.json")
> ```
2020-08-17 14:45:24 +00:00
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a JSON file. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| **RETURNS** | The modified `Sentencizer` object. ~~Sentencizer~~ |
## Sentencizer.to_bytes {#to_bytes tag="method"}
Serialize the sentencizer settings to a bytestring.
> #### Example
>
> ```python
> config = {"punct_chars": [".", "?", "!", "。"]}
> sentencizer = nlp.add_pipe("sentencizer", config=config)
> sentencizer_bytes = sentencizer.to_bytes()
> ```
2020-08-17 14:45:24 +00:00
| Name | Description |
| ----------- | ------------------------------ |
| **RETURNS** | The serialized data. ~~bytes~~ |
## Sentencizer.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> sentencizer_bytes = sentencizer.to_bytes()
> sentencizer = nlp.add_pipe("sentencizer")
> sentencizer.from_bytes(sentencizer_bytes)
> ```
2020-08-17 14:45:24 +00:00
| Name | Description |
| ------------ | -------------------------------------------------- |
| `bytes_data` | The bytestring to load. ~~bytes~~ |
| **RETURNS** | The modified `Sentencizer` object. ~~Sentencizer~~ |