2019-10-08 10:20:55 +00:00
|
|
|
import itertools
|
2019-07-27 15:30:18 +00:00
|
|
|
import pytest
|
2019-10-08 10:20:55 +00:00
|
|
|
from spacy.language import Language
|
|
|
|
from spacy.tokens import Doc, Span
|
|
|
|
from spacy.vocab import Vocab
|
2020-09-09 08:31:03 +00:00
|
|
|
from spacy.training import Example
|
2020-07-22 11:42:59 +00:00
|
|
|
from spacy.lang.en import English
|
2020-09-15 12:24:06 +00:00
|
|
|
from spacy.lang.de import German
|
2020-08-05 17:47:54 +00:00
|
|
|
from spacy.util import registry
|
2020-09-15 09:12:12 +00:00
|
|
|
import spacy
|
2019-10-08 10:20:55 +00:00
|
|
|
|
|
|
|
from .util import add_vecs_to_vocab, assert_docs_equal
|
2019-07-27 15:30:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def nlp():
|
|
|
|
nlp = Language(Vocab())
|
2020-07-22 11:42:59 +00:00
|
|
|
textcat = nlp.add_pipe("textcat")
|
2019-07-27 15:30:18 +00:00
|
|
|
for label in ("POSITIVE", "NEGATIVE"):
|
|
|
|
textcat.add_label(label)
|
2020-09-28 19:35:09 +00:00
|
|
|
nlp.initialize()
|
2019-07-27 15:30:18 +00:00
|
|
|
return nlp
|
|
|
|
|
|
|
|
|
|
|
|
def test_language_update(nlp):
|
|
|
|
text = "hello world"
|
|
|
|
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
|
2019-08-06 09:01:25 +00:00
|
|
|
wrongkeyannots = {"LABEL": True}
|
2019-07-27 15:30:18 +00:00
|
|
|
doc = Doc(nlp.vocab, words=text.split(" "))
|
2020-07-06 11:02:36 +00:00
|
|
|
example = Example.from_dict(doc, annots)
|
|
|
|
nlp.update([example])
|
|
|
|
|
|
|
|
# Not allowed to call with just one Example
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
nlp.update(example)
|
|
|
|
|
|
|
|
# Update with text and dict: not supported anymore since v.3
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
nlp.update((text, annots))
|
2019-07-27 15:30:18 +00:00
|
|
|
# Update with doc object and dict
|
2020-07-06 11:02:36 +00:00
|
|
|
with pytest.raises(TypeError):
|
|
|
|
nlp.update((doc, annots))
|
|
|
|
|
|
|
|
# Create examples badly
|
2019-08-06 09:01:25 +00:00
|
|
|
with pytest.raises(ValueError):
|
2020-07-06 11:02:36 +00:00
|
|
|
example = Example.from_dict(doc, None)
|
2020-06-26 17:34:12 +00:00
|
|
|
with pytest.raises(KeyError):
|
2020-07-06 11:02:36 +00:00
|
|
|
example = Example.from_dict(doc, wrongkeyannots)
|
2019-07-27 15:30:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_language_evaluate(nlp):
|
|
|
|
text = "hello world"
|
2020-06-26 17:34:12 +00:00
|
|
|
annots = {"doc_annotation": {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}}
|
2019-07-27 15:30:18 +00:00
|
|
|
doc = Doc(nlp.vocab, words=text.split(" "))
|
2020-07-06 11:02:36 +00:00
|
|
|
example = Example.from_dict(doc, annots)
|
2020-12-30 23:45:50 +00:00
|
|
|
scores = nlp.evaluate([example])
|
|
|
|
assert scores["speed"] > 0
|
|
|
|
|
|
|
|
# test with generator
|
|
|
|
scores = nlp.evaluate(eg for eg in [example])
|
|
|
|
assert scores["speed"] > 0
|
2020-07-06 11:02:36 +00:00
|
|
|
|
|
|
|
# Not allowed to call with just one Example
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
nlp.evaluate(example)
|
|
|
|
|
|
|
|
# Evaluate with text and dict: not supported anymore since v.3
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
nlp.evaluate([(text, annots)])
|
2019-07-27 15:30:18 +00:00
|
|
|
# Evaluate with doc object and dict
|
2020-07-06 11:02:36 +00:00
|
|
|
with pytest.raises(TypeError):
|
|
|
|
nlp.evaluate([(doc, annots)])
|
|
|
|
with pytest.raises(TypeError):
|
2020-06-26 17:34:12 +00:00
|
|
|
nlp.evaluate([text, annots])
|
2019-10-08 10:20:55 +00:00
|
|
|
|
|
|
|
|
2019-11-16 19:20:37 +00:00
|
|
|
def test_evaluate_no_pipe(nlp):
|
|
|
|
"""Test that docs are processed correctly within Language.pipe if the
|
|
|
|
component doesn't expose a .pipe method."""
|
|
|
|
|
2020-07-22 11:42:59 +00:00
|
|
|
@Language.component("test_evaluate_no_pipe")
|
2019-11-16 19:20:37 +00:00
|
|
|
def pipe(doc):
|
|
|
|
return doc
|
|
|
|
|
|
|
|
text = "hello world"
|
|
|
|
annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}
|
|
|
|
nlp = Language(Vocab())
|
2020-07-06 11:02:36 +00:00
|
|
|
doc = nlp(text)
|
2020-07-22 11:42:59 +00:00
|
|
|
nlp.add_pipe("test_evaluate_no_pipe")
|
2020-07-06 11:02:36 +00:00
|
|
|
nlp.evaluate([Example.from_dict(doc, annots)])
|
2019-11-16 19:20:37 +00:00
|
|
|
|
|
|
|
|
2020-07-22 11:42:59 +00:00
|
|
|
@Language.component("test_language_vector_modification_pipe")
|
2019-10-08 10:20:55 +00:00
|
|
|
def vector_modification_pipe(doc):
|
|
|
|
doc.vector += 1
|
|
|
|
return doc
|
|
|
|
|
|
|
|
|
2020-07-22 11:42:59 +00:00
|
|
|
@Language.component("test_language_userdata_pipe")
|
2019-10-08 10:20:55 +00:00
|
|
|
def userdata_pipe(doc):
|
|
|
|
doc.user_data["foo"] = "bar"
|
|
|
|
return doc
|
|
|
|
|
|
|
|
|
2020-07-22 11:42:59 +00:00
|
|
|
@Language.component("test_language_ner_pipe")
|
2019-10-08 10:20:55 +00:00
|
|
|
def ner_pipe(doc):
|
|
|
|
span = Span(doc, 0, 1, label="FIRST")
|
|
|
|
doc.ents += (span,)
|
|
|
|
return doc
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def sample_vectors():
|
|
|
|
return [
|
|
|
|
("spacy", [-0.1, -0.2, -0.3]),
|
|
|
|
("world", [-0.2, -0.3, -0.4]),
|
|
|
|
("pipe", [0.7, 0.8, 0.9]),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def nlp2(nlp, sample_vectors):
|
|
|
|
add_vecs_to_vocab(nlp.vocab, sample_vectors)
|
2020-07-22 11:42:59 +00:00
|
|
|
nlp.add_pipe("test_language_vector_modification_pipe")
|
|
|
|
nlp.add_pipe("test_language_ner_pipe")
|
|
|
|
nlp.add_pipe("test_language_userdata_pipe")
|
2019-10-08 10:20:55 +00:00
|
|
|
return nlp
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def texts():
|
|
|
|
data = [
|
|
|
|
"Hello world.",
|
|
|
|
"This is spacy.",
|
|
|
|
"You can use multiprocessing with pipe method.",
|
|
|
|
"Please try!",
|
|
|
|
]
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("n_process", [1, 2])
|
|
|
|
def test_language_pipe(nlp2, n_process, texts):
|
|
|
|
texts = texts * 10
|
|
|
|
expecteds = [nlp2(text) for text in texts]
|
|
|
|
docs = nlp2.pipe(texts, n_process=n_process, batch_size=2)
|
|
|
|
|
|
|
|
for doc, expected_doc in zip(docs, expecteds):
|
|
|
|
assert_docs_equal(doc, expected_doc)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("n_process", [1, 2])
|
|
|
|
def test_language_pipe_stream(nlp2, n_process, texts):
|
|
|
|
# check if nlp.pipe can handle infinite length iterator properly.
|
|
|
|
stream_texts = itertools.cycle(texts)
|
|
|
|
texts0, texts1 = itertools.tee(stream_texts)
|
|
|
|
expecteds = (nlp2(text) for text in texts0)
|
|
|
|
docs = nlp2.pipe(texts1, n_process=n_process, batch_size=2)
|
|
|
|
|
|
|
|
n_fetch = 20
|
|
|
|
for doc, expected_doc in itertools.islice(zip(docs, expecteds), n_fetch):
|
|
|
|
assert_docs_equal(doc, expected_doc)
|
2020-07-22 11:42:59 +00:00
|
|
|
|
|
|
|
|
2020-08-05 17:47:54 +00:00
|
|
|
def test_language_from_config_before_after_init():
|
|
|
|
name = "test_language_from_config_before_after_init"
|
|
|
|
ran_before = False
|
|
|
|
ran_after = False
|
|
|
|
ran_after_pipeline = False
|
2021-01-12 10:29:31 +00:00
|
|
|
ran_before_init = False
|
|
|
|
ran_after_init = False
|
2020-08-05 17:47:54 +00:00
|
|
|
|
|
|
|
@registry.callbacks(f"{name}_before")
|
|
|
|
def make_before_creation():
|
|
|
|
def before_creation(lang_cls):
|
|
|
|
nonlocal ran_before
|
|
|
|
ran_before = True
|
|
|
|
assert lang_cls is English
|
|
|
|
lang_cls.Defaults.foo = "bar"
|
|
|
|
return lang_cls
|
|
|
|
|
|
|
|
return before_creation
|
|
|
|
|
|
|
|
@registry.callbacks(f"{name}_after")
|
|
|
|
def make_after_creation():
|
|
|
|
def after_creation(nlp):
|
|
|
|
nonlocal ran_after
|
|
|
|
ran_after = True
|
|
|
|
assert isinstance(nlp, English)
|
|
|
|
assert nlp.pipe_names == []
|
|
|
|
assert nlp.Defaults.foo == "bar"
|
|
|
|
nlp.meta["foo"] = "bar"
|
|
|
|
return nlp
|
|
|
|
|
|
|
|
return after_creation
|
|
|
|
|
|
|
|
@registry.callbacks(f"{name}_after_pipeline")
|
|
|
|
def make_after_pipeline_creation():
|
|
|
|
def after_pipeline_creation(nlp):
|
|
|
|
nonlocal ran_after_pipeline
|
|
|
|
ran_after_pipeline = True
|
|
|
|
assert isinstance(nlp, English)
|
|
|
|
assert nlp.pipe_names == ["sentencizer"]
|
|
|
|
assert nlp.Defaults.foo == "bar"
|
|
|
|
assert nlp.meta["foo"] == "bar"
|
|
|
|
nlp.meta["bar"] = "baz"
|
|
|
|
return nlp
|
|
|
|
|
|
|
|
return after_pipeline_creation
|
|
|
|
|
2021-01-12 10:29:31 +00:00
|
|
|
@registry.callbacks(f"{name}_before_init")
|
|
|
|
def make_before_init():
|
|
|
|
def before_init(nlp):
|
|
|
|
nonlocal ran_before_init
|
|
|
|
ran_before_init = True
|
|
|
|
nlp.meta["before_init"] = "before"
|
|
|
|
return nlp
|
|
|
|
|
|
|
|
return before_init
|
|
|
|
|
|
|
|
@registry.callbacks(f"{name}_after_init")
|
|
|
|
def make_after_init():
|
|
|
|
def after_init(nlp):
|
|
|
|
nonlocal ran_after_init
|
|
|
|
ran_after_init = True
|
|
|
|
nlp.meta["after_init"] = "after"
|
|
|
|
return nlp
|
|
|
|
|
|
|
|
return after_init
|
|
|
|
|
2020-08-05 17:47:54 +00:00
|
|
|
config = {
|
|
|
|
"nlp": {
|
|
|
|
"pipeline": ["sentencizer"],
|
|
|
|
"before_creation": {"@callbacks": f"{name}_before"},
|
|
|
|
"after_creation": {"@callbacks": f"{name}_after"},
|
|
|
|
"after_pipeline_creation": {"@callbacks": f"{name}_after_pipeline"},
|
|
|
|
},
|
|
|
|
"components": {"sentencizer": {"factory": "sentencizer"}},
|
2021-01-12 10:29:31 +00:00
|
|
|
"initialize": {
|
|
|
|
"before_init": {"@callbacks": f"{name}_before_init"},
|
|
|
|
"after_init": {"@callbacks": f"{name}_after_init"},
|
|
|
|
},
|
2020-08-05 17:47:54 +00:00
|
|
|
}
|
|
|
|
nlp = English.from_config(config)
|
|
|
|
assert nlp.Defaults.foo == "bar"
|
|
|
|
assert nlp.meta["foo"] == "bar"
|
|
|
|
assert nlp.meta["bar"] == "baz"
|
2021-01-12 10:29:31 +00:00
|
|
|
assert "before_init" not in nlp.meta
|
|
|
|
assert "after_init" not in nlp.meta
|
2020-08-05 17:47:54 +00:00
|
|
|
assert nlp.pipe_names == ["sentencizer"]
|
|
|
|
assert nlp("text")
|
2021-01-12 10:29:31 +00:00
|
|
|
nlp.initialize()
|
|
|
|
assert nlp.meta["before_init"] == "before"
|
|
|
|
assert nlp.meta["after_init"] == "after"
|
2021-01-15 00:57:36 +00:00
|
|
|
assert all(
|
|
|
|
[ran_before, ran_after, ran_after_pipeline, ran_before_init, ran_after_init]
|
|
|
|
)
|
2020-08-05 17:47:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_language_from_config_before_after_init_invalid():
|
|
|
|
"""Check that an error is raised if function doesn't return nlp."""
|
|
|
|
name = "test_language_from_config_before_after_init_invalid"
|
|
|
|
registry.callbacks(f"{name}_before1", func=lambda: lambda nlp: None)
|
|
|
|
registry.callbacks(f"{name}_before2", func=lambda: lambda nlp: nlp())
|
|
|
|
registry.callbacks(f"{name}_after1", func=lambda: lambda nlp: None)
|
|
|
|
registry.callbacks(f"{name}_after1", func=lambda: lambda nlp: English)
|
|
|
|
|
|
|
|
for callback_name in [f"{name}_before1", f"{name}_before2"]:
|
|
|
|
config = {"nlp": {"before_creation": {"@callbacks": callback_name}}}
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
English.from_config(config)
|
|
|
|
for callback_name in [f"{name}_after1", f"{name}_after2"]:
|
|
|
|
config = {"nlp": {"after_creation": {"@callbacks": callback_name}}}
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
English.from_config(config)
|
|
|
|
for callback_name in [f"{name}_after1", f"{name}_after2"]:
|
|
|
|
config = {"nlp": {"after_pipeline_creation": {"@callbacks": callback_name}}}
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
English.from_config(config)
|
2020-08-09 13:24:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_language_custom_tokenizer():
|
|
|
|
"""Test that a fully custom tokenizer can be plugged in via the registry."""
|
|
|
|
name = "test_language_custom_tokenizer"
|
|
|
|
|
|
|
|
class CustomTokenizer:
|
|
|
|
"""Dummy "tokenizer" that splits on spaces and adds prefix to each word."""
|
|
|
|
|
|
|
|
def __init__(self, nlp, prefix):
|
|
|
|
self.vocab = nlp.vocab
|
|
|
|
self.prefix = prefix
|
|
|
|
|
|
|
|
def __call__(self, text):
|
|
|
|
words = [f"{self.prefix}{word}" for word in text.split(" ")]
|
|
|
|
return Doc(self.vocab, words=words)
|
|
|
|
|
|
|
|
@registry.tokenizers(name)
|
|
|
|
def custom_create_tokenizer(prefix: str = "_"):
|
|
|
|
def create_tokenizer(nlp):
|
|
|
|
return CustomTokenizer(nlp, prefix=prefix)
|
|
|
|
|
|
|
|
return create_tokenizer
|
|
|
|
|
|
|
|
config = {"nlp": {"tokenizer": {"@tokenizers": name}}}
|
|
|
|
nlp = English.from_config(config)
|
|
|
|
doc = nlp("hello world")
|
|
|
|
assert [t.text for t in doc] == ["_hello", "_world"]
|
|
|
|
doc = list(nlp.pipe(["hello world"]))[0]
|
|
|
|
assert [t.text for t in doc] == ["_hello", "_world"]
|
2020-09-15 12:24:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_language_from_config_invalid_lang():
|
|
|
|
"""Test that calling Language.from_config raises an error and lang defined
|
|
|
|
in config needs to match language-specific subclasses."""
|
|
|
|
config = {"nlp": {"lang": "en"}}
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
Language.from_config(config)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
German.from_config(config)
|
2020-09-15 12:24:42 +00:00
|
|
|
|
|
|
|
|
2020-09-15 09:12:12 +00:00
|
|
|
def test_spacy_blank():
|
|
|
|
nlp = spacy.blank("en")
|
|
|
|
assert nlp.config["training"]["dropout"] == 0.1
|
|
|
|
config = {"training": {"dropout": 0.2}}
|
|
|
|
meta = {"name": "my_custom_model"}
|
|
|
|
nlp = spacy.blank("en", config=config, meta=meta)
|
|
|
|
assert nlp.config["training"]["dropout"] == 0.2
|
|
|
|
assert nlp.meta["name"] == "my_custom_model"
|
2020-09-15 11:25:34 +00:00
|
|
|
|
|
|
|
|
2020-09-29 19:39:28 +00:00
|
|
|
@pytest.mark.parametrize("value", [False, None, ["x", "y"], Language, Vocab])
|
2020-09-15 11:25:34 +00:00
|
|
|
def test_language_init_invalid_vocab(value):
|
|
|
|
err_fragment = "invalid value"
|
|
|
|
with pytest.raises(ValueError) as e:
|
|
|
|
Language(value)
|
2020-09-15 20:30:09 +00:00
|
|
|
assert err_fragment in str(e.value)
|