spaCy/bin/init_model.py

229 lines
7.2 KiB
Python
Raw Normal View History

"""Set up a model directory.
Requires:
lang_data --- Rules for the tokenizer
* prefix.txt
* suffix.txt
* infix.txt
* morphs.json
* specials.json
corpora --- Data files
* WordNet
* words.sgt.prob --- Smoothed unigram probabilities
* clusters.txt --- Output of hierarchical clustering, e.g. Brown clusters
* vectors.bz2 --- output of something like word2vec, compressed with bzip
"""
from __future__ import unicode_literals
from ast import literal_eval
2015-07-25 20:56:35 +00:00
import math
import gzip
2015-09-06 15:51:30 +00:00
import json
import plac
from pathlib import Path
from shutil import copyfile
from shutil import copytree
from collections import defaultdict
2015-09-30 18:20:09 +00:00
import io
from spacy.vocab import Vocab
from spacy.vocab import write_binary_vectors
from spacy.strings import hash_string
from preshed.counter import PreshCounter
from spacy.parts_of_speech import NOUN, VERB, ADJ
from spacy.util import get_lang_class
try:
unicode
except NameError:
unicode = str
def setup_tokenizer(lang_data_dir, tok_dir):
if not tok_dir.exists():
tok_dir.mkdir()
for filename in ('infix.txt', 'morphs.json', 'prefix.txt', 'specials.json',
'suffix.txt'):
src = lang_data_dir / filename
dst = tok_dir / filename
copyfile(str(src), str(dst))
def _read_clusters(loc):
if not loc.exists():
print("Warning: Clusters file not found")
return {}
clusters = {}
2015-09-30 18:20:09 +00:00
for line in io.open(str(loc), 'r', encoding='utf8'):
try:
cluster, word, freq = line.split()
except ValueError:
continue
# If the clusterer has only seen the word a few times, its cluster is
# unreliable.
if int(freq) >= 3:
clusters[word] = cluster
else:
clusters[word] = '0'
2015-05-31 03:50:50 +00:00
# Expand clusters with re-casing
2015-07-23 11:13:15 +00:00
for word, cluster in list(clusters.items()):
2015-05-31 03:50:50 +00:00
if word.lower() not in clusters:
clusters[word.lower()] = cluster
if word.title() not in clusters:
clusters[word.title()] = cluster
2015-05-31 13:21:28 +00:00
if word.upper() not in clusters:
2015-05-31 03:50:50 +00:00
clusters[word.upper()] = cluster
return clusters
def _read_probs(loc):
if not loc.exists():
print("Probabilities file not found. Trying freqs.")
2015-07-25 21:33:02 +00:00
return {}, 0.0
probs = {}
2015-09-30 18:20:09 +00:00
for i, line in enumerate(io.open(str(loc), 'r', encoding='utf8')):
prob, word = line.split()
prob = float(prob)
probs[word] = prob
2015-07-25 21:33:02 +00:00
return probs, probs['-OOV-']
def _read_freqs(loc, max_length=100, min_doc_freq=5, min_freq=200):
2015-07-25 20:54:08 +00:00
if not loc.exists():
print("Warning: Frequencies file not found")
2015-07-26 12:03:30 +00:00
return {}, 0.0
counts = PreshCounter()
total = 0
if str(loc).endswith('gz'):
file_ = gzip.open(str(loc))
else:
file_ = loc.open()
for i, line in enumerate(file_):
freq, doc_freq, key = line.rstrip().split('\t', 2)
freq = int(freq)
2015-07-25 20:56:35 +00:00
counts.inc(i+1, freq)
total += freq
counts.smooth()
log_total = math.log(total)
if str(loc).endswith('gz'):
file_ = gzip.open(str(loc))
else:
file_ = loc.open()
probs = {}
for line in file_:
freq, doc_freq, key = line.rstrip().split('\t', 2)
doc_freq = int(doc_freq)
freq = int(freq)
if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
word = literal_eval(key)
smooth_count = counts.smoother(int(freq))
probs[word] = math.log(smooth_count) - log_total
2015-07-25 21:29:51 +00:00
oov_prob = math.log(counts.smoother(0)) - log_total
return probs, oov_prob
def _read_senses(loc):
lexicon = defaultdict(lambda: defaultdict(list))
if not loc.exists():
print("Warning: WordNet senses not found")
return lexicon
sense_names = dict((s, i) for i, s in enumerate(spacy.senses.STRINGS))
pos_ids = {'noun': NOUN, 'verb': VERB, 'adjective': ADJ}
for line in codecs.open(str(loc), 'r', 'utf8'):
sense_strings = line.split()
word = sense_strings.pop(0)
for sense in sense_strings:
pos, sense = sense[3:].split('.')
sense_name = '%s_%s' % (pos[0].upper(), sense.lower())
if sense_name != 'N_tops':
sense_id = sense_names[sense_name]
lexicon[word][pos_ids[pos]].append(sense_id)
return lexicon
2015-09-06 15:51:30 +00:00
def setup_vocab(get_lex_attr, tag_map, src_dir, dst_dir):
if not dst_dir.exists():
dst_dir.mkdir()
vectors_src = src_dir / 'vectors.bz2'
if vectors_src.exists():
write_binary_vectors(str(vectors_src), str(dst_dir / 'vec.bin'))
else:
print("Warning: Word vectors file not found")
2015-09-06 15:51:30 +00:00
vocab = Vocab(get_lex_attr=get_lex_attr, tag_map=tag_map)
clusters = _read_clusters(src_dir / 'clusters.txt')
2015-07-25 21:29:51 +00:00
probs, oov_prob = _read_probs(src_dir / 'words.sgt.prob')
if not probs:
probs, oov_prob = _read_freqs(src_dir / 'freqs.txt.gz')
if not probs:
oov_prob = -20
else:
2015-07-25 21:29:51 +00:00
oov_prob = min(probs.values())
for word in clusters:
if word not in probs:
2015-07-25 21:29:51 +00:00
probs[word] = oov_prob
lexicon = []
2015-07-23 07:45:15 +00:00
for word, prob in reversed(sorted(list(probs.items()), key=lambda item: item[1])):
# First encode the strings into the StringStore. This way, we can map
# the orth IDs to frequency ranks
orth = vocab.strings[word]
# Now actually load the vocab
for word, prob in reversed(sorted(list(probs.items()), key=lambda item: item[1])):
lexeme = vocab[word]
lexeme.prob = prob
lexeme.is_oov = False
2015-07-25 21:29:51 +00:00
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
lexeme.cluster = int(clusters[word][::-1], 2)
else:
lexeme.cluster = 0
vocab.dump(str(dst_dir / 'lexemes.bin'))
with (dst_dir / 'strings.json').open('w') as file_:
vocab.strings.dump(file_)
2015-07-25 21:29:51 +00:00
with (dst_dir / 'oov_prob').open('w') as file_:
file_.write('%f' % oov_prob)
def main(lang_id, lang_data_dir, corpora_dir, model_dir):
model_dir = Path(model_dir)
lang_data_dir = Path(lang_data_dir) / lang_id
corpora_dir = Path(corpora_dir) / lang_id
assert corpora_dir.exists()
assert lang_data_dir.exists()
if not model_dir.exists():
model_dir.mkdir()
2015-09-06 15:51:30 +00:00
tag_map = json.load((lang_data_dir / 'tag_map.json').open())
setup_tokenizer(lang_data_dir, model_dir / 'tokenizer')
setup_vocab(get_lang_class(lang_id).default_lex_attrs(), tag_map, corpora_dir,
model_dir / 'vocab')
2015-08-06 14:07:23 +00:00
if (lang_data_dir / 'gazetteer.json').exists():
copyfile(str(lang_data_dir / 'gazetteer.json'),
str(model_dir / 'vocab' / 'gazetteer.json'))
2015-08-27 08:26:02 +00:00
copyfile(str(lang_data_dir / 'tag_map.json'),
str(model_dir / 'vocab' / 'tag_map.json'))
2015-09-12 03:54:02 +00:00
2015-08-27 08:26:02 +00:00
if (lang_data_dir / 'lemma_rules.json').exists():
copyfile(str(lang_data_dir / 'lemma_rules.json'),
str(model_dir / 'vocab' / 'lemma_rules.json'))
if not (model_dir / 'wordnet').exists() and (corpora_dir / 'wordnet').exists():
copytree(str(corpora_dir / 'wordnet' / 'dict'), str(model_dir / 'wordnet'))
if __name__ == '__main__':
plac.call(main)