spaCy/services/displacy.py

341 lines
11 KiB
Python
Raw Normal View History

2015-10-28 16:36:11 +00:00
#!/usr/bin/env python
from __future__ import unicode_literals
from __future__ import print_function
import sys
import falcon
import json
from os import path
from collections import defaultdict
import pprint
import numpy
import spacy.en
from spacy.attrs import ORTH, SPACY, TAG, POS, ENT_IOB, ENT_TYPE
from spacy.parts_of_speech import NAMES as UNIV_POS_NAMES
try:
unicode
except NameError:
unicode = str
NLU = spacy.en.English()
def merge_entities(doc):
ents = [(e[0].idx, e[len(e)-1].idx + len(e[len(e)-1]), e.label_, e.text)
for e in doc.ents if len(e) >= 2]
for start, end, label, lemma in ents:
merged = doc.merge(start, end, label, text, label)
assert merged != None
def merge_nps(doc):
nps = [(np[0].idx, np[-1].idx + len(np[-1]), np.root.tag_, np.text)
for np in doc.noun_chunks if len(np) >= 2]
for start, end, ent_type, lemma in nps:
doc.merge(start, end, u'NP', lemma, ent_type)
def merge_punct(tokens):
# Merge punctuation onto its head
collect = False
start = None
merges = []
for word in tokens:
if word.whitespace_:
if collect:
span = tokens[start:word.i+1]
if len(span) >= 2:
merges.append((
span[0].idx,
span[-1].idx + len(span[-1]),
span.root.tag_,
span.root.lemma_,
span.root.ent_type_))
collect = False
start = None
elif not collect:
collect = True
start = word.i
if collect:
span = tokens[start:len(tokens)]
merges.append((span[0].idx, span[-1].idx + len(span[-1]),
span.root.tag_, span.root.lemma_, span.root.ent_type_))
for merge in merges:
tokens.merge(*merge)
def get_actions(parse_state, n_actions):
actions = []
queue = list(sorted(parse_state.queue))
stack = list(sorted(parse_state.stack))
stack = []
actions.append({'label': 'shift', 'key': 'S', 'binding': 38,
'is_valid': NLU.parser.moves.is_valid(parse_state, 'S')})
actions.append({'label': 'left', 'key': 'L', 'binding': 37,
'is_valid': NLU.parser.moves.is_valid(parse_state, 'L-det')})
actions.append({'label': 'predict', 'key': '_', 'binding': 32,
'is_valid': bool(parse_state.queue or parse_state.stack)})
actions.append({'label': 'right', 'key': 'R', 'binding': 39,
'is_valid': NLU.parser.moves.is_valid(parse_state, 'R-dobj')})
actions.append({'label': 'undo', 'key': '-', 'binding': 8,
'is_valid': n_actions != 0})
actions.append({'label': 'reduce', 'key': 'D', 'binding': 40,
'is_valid': NLU.parser.moves.is_valid(parse_state, 'D')})
return actions
class Model(object):
def to_json(self):
return {name: _as_json(value) for name, value in self.__dict__.items()
if not name.startswith('_')}
def _as_json(value):
if hasattr(value, 'to_json'):
return value.to_json()
elif isinstance(value, list):
return [_as_json(v) for v in value]
elif isinstance(value, set):
return {key: True for key in value}
else:
return value
def _parse_history(history):
if history and history.endswith(','):
history = history[:-1]
history = history.strip().split(',') if history else tuple()
new_hist = []
history_length = len(history)
for action in history:
if action == '-':
if new_hist:
new_hist.pop()
else:
new_hist.append(action)
return new_hist, history_length
def apply_edits(tokens, word_edits, tag_edits):
new_words = []
attrs = (POS, ENT_TYPE, ENT_IOB)
new_analysis = numpy.zeros(shape=(len(tokens), len(attrs)), dtype=numpy.int32)
for word in tokens:
key = str(word.i)
new_words.append(word_edits.get(key, word.orth_))
tag = tag_edits.get(key, word.pos_)
if tag in UNIV_POS_NAMES:
new_analysis[word.i, 0] = UNIV_POS_NAMES[tag]
# Set ent_type=0 and IOB="O"
new_analysis[word.i, 1] = 0
new_analysis[word.i, 2] = 2
else:
new_analysis[word.i, 0] = word.pos
new_analysis[word.i, 1] = NLU.vocab.strings[tag]
new_analysis[word.i, 2] = 3
doc = NLU.tokenizer.tokens_from_list(new_words)
doc.from_array(attrs, new_analysis)
NLU.parser(doc)
return doc
class Parse(Model):
def __init__(self, doc, states, actions, **kwargs):
word_edits = kwargs.get('words', {})
tag_edits = kwargs.get('tags', {})
if word_edits or tag_edits:
doc = apply_edits(doc, word_edits, tag_edits)
notes = kwargs.get('notes', {})
self.actions = actions
self.words = [Word(w, w.i in word_edits, w.i in tag_edits) for w in doc]
self.states = states
self.notes = notes
for word in doc:
print(word.orth_, word.head.orth_)
@classmethod
def from_text(cls, text, **kwargs):
tokens = NLU(text)
#merge_entities(tokens)
merge_nps(tokens)
#merge_punct(tokens)
return cls(tokens, [State.from_doc(tokens)], [], **kwargs)
@classmethod
def from_history(cls, text, history, **kwargs):
if not isinstance(text, unicode):
text = text.decode('utf8')
text = text.replace('-SLASH-', '/')
history, history_length = _parse_history(history)
tokens = NLU.tokenizer(text)
NLU.tagger(tokens)
NLU.matcher(tokens)
with NLU.parser.step_through(tokens) as state:
for action in history:
state.transition(action)
NLU.entity(tokens)
actions = get_actions(state.stcls, len(history))
return Parse(tokens, [State(state.heads, state.deps, state.stack, state.queue)],
actions, **kwargs)
@classmethod
def with_history(cls, text):
tokens = NLU.tokenizer(text)
NLU.tagger(tokens)
NLU.matcher(tokens)
with NLU.parser.step_through(tokens) as state:
states = []
while not state.is_final:
action = state.predict()
state.transition(action)
states.append(State(state.heads, state.deps, state.stack, state.queue))
actions = [
{'label': 'prev', 'key': 'P', 'binding': 37, 'is_valid': True},
{'label': 'next', 'key': 'N', 'binding': 39, 'is_valid': True}
]
return Parse(state.doc, states, actions)
class Word(Model):
def __init__(self, token, is_w_edit=False, is_t_edit=False):
self.word = token.orth_
self.tag = token.pos_
self.tag = token.pos_ if not token.ent_type_ else token.ent_type_
self.is_entity = token.ent_iob in (1, 3)
self.is_w_edit = is_w_edit
self.is_t_edit = is_t_edit
self.prob = token.prob
class State(Model):
def __init__(self, heads, deps, stack, queue):
Model.__init__(self)
queue = [w for w in queue if w >= 0]
self.focus = min(queue) if queue else -1
self.is_final = bool(not stack and not queue)
self.stack = set(stack)
self.arrows = self._get_arrows(heads, deps)
@classmethod
def from_doc(cls, doc):
return cls([w.head.i for w in doc], [w.dep_ for w in doc], [], [])
def _get_arrows(self, heads, deps):
arcs = defaultdict(dict)
for i, (head, dep) in enumerate(zip(heads, deps)):
if i < head:
arcs[head - i][i] = Arrow(i, head, dep)
elif i > head:
arcs[i - head][head] = Arrow(i, head, dep)
output = []
for level in range(1, len(heads)):
level_arcs = []
for i in range(len(heads) - level):
level_arcs.append(arcs[level].get(i))
output.append(level_arcs)
while output and all(arc is None for arc in output[-1]):
output.pop()
return output
class Arrow(Model):
def __init__(self, word, head, label):
self.dir = 'left' if head > word else 'right'
self.label = label
class Endpoint(object):
def set_header(self, resp):
resp.content_type = 'text/string'
resp.append_header('Access-Control-Allow-Origin', "*")
resp.status = falcon.HTTP_200
def set_body(self, resp, parse):
resp.body = json.dumps(parse.to_json(), indent=4)
def on_get(self, req, resp, text):
if not isinstance(text, unicode):
text = text.decode('utf8')
self.set_body(resp, self.get_parse(text))
self.set_header(resp)
def on_post(self, req, resp):
try:
body_bytes = req.stream.read()
json_data = json.loads(body_bytes.decode('utf8'))
text = json_data['text']
if not isinstance(text, unicode):
text = text.decode('utf8')
self.set_body(resp, self.get_parse(text))
self.set_header(resp)
except:
pass
class ParseEP(Endpoint):
def get_parse(self, text, **kwargs):
return Parse.from_text(text, **kwargs)
class StepsEP(Endpoint):
def get_parse(self, text):
print('Step=', repr(text))
return Parse.with_history(text)
class ManualEP(Endpoint):
def get_parse(self, text, **kwargs):
print('Manual=', repr(text))
if '/' in text:
text, actions = text.rsplit('/', 1)
else:
actions = ''
return Parse.from_history(text, actions, **kwargs)
def on_get(self, req, resp, text, actions=''):
if not isinstance(text, unicode):
text = text.decode('utf8')
self.set_body(resp, self.get_parse(text + '/' + actions))
self.set_header(resp)
def on_post(self, req, resp):
self.set_header(resp)
body_bytes = req.stream.read()
json_data = json.loads(body_bytes.decode('utf8'))
print(json_data)
params = json_data.get('params', {})
self.set_body(resp, self.get_parse(json_data['text'], **params))
app = falcon.API()
remote_man = ManualEP()
remote_parse = ParseEP()
remote_steps = StepsEP()
app.add_route('/api/displacy/parse/', remote_parse)
app.add_route('/api/displacy/parse/{text}/', remote_parse)
app.add_route('/api/displacy/steps/', remote_steps)
app.add_route('/api/displacy/steps/{text}/', remote_steps)
app.add_route('/api/displacy/manual/', remote_man)
app.add_route('/api/displacy/manual/{text}/', remote_man)
app.add_route('/api/displacy/manual/{text}/{actions}', remote_man)
if __name__ == '__main__':
text, actions = open(sys.argv[1]).read().strip().split('\n')
parse = Parse.from_text(text)
pprint.pprint(parse.to_json())