mirror of https://github.com/explosion/spaCy.git
268 lines
10 KiB
Python
268 lines
10 KiB
Python
|
from typing import Optional, Callable, Any, Iterable, Union, List
|
||
|
from thinc.api import Config, fix_random_seed, set_gpu_allocator, Model, Optimizer
|
||
|
from thinc.api import set_dropout_rate, to_categorical, CosineDistance, L2Distance
|
||
|
from pathlib import Path
|
||
|
from functools import partial
|
||
|
from collections import Counter
|
||
|
import srsly
|
||
|
import numpy
|
||
|
import time
|
||
|
import re
|
||
|
from wasabi import msg
|
||
|
|
||
|
from .example import Example
|
||
|
from ..tokens import Doc
|
||
|
from ..attrs import ID
|
||
|
from ..ml.models.multi_task import build_cloze_multi_task_model
|
||
|
from ..ml.models.multi_task import build_cloze_characters_multi_task_model
|
||
|
from ..schemas import ConfigSchemaTraining, ConfigSchemaPretrain
|
||
|
from ..util import registry, load_model_from_config, dot_to_object, logger
|
||
|
|
||
|
|
||
|
def pretrain(
|
||
|
config: Config,
|
||
|
output_dir: Path,
|
||
|
resume_path: Optional[Path] = None,
|
||
|
epoch_resume: Optional[int] = None,
|
||
|
use_gpu: int = -1,
|
||
|
logger: Callable[[Any], Any] = logger,
|
||
|
):
|
||
|
if config["training"]["seed"] is not None:
|
||
|
fix_random_seed(config["training"]["seed"])
|
||
|
allocator = config["training"]["gpu_allocator"]
|
||
|
if use_gpu >= 0 and allocator:
|
||
|
set_gpu_allocator(allocator)
|
||
|
nlp = load_model_from_config(config)
|
||
|
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
||
|
P = registry.resolve(nlp.config["pretraining"], schema=ConfigSchemaPretrain)
|
||
|
corpus = dot_to_object(T, P["corpus"])
|
||
|
batcher = P["batcher"]
|
||
|
model = create_pretraining_model(nlp, P)
|
||
|
optimizer = P["optimizer"]
|
||
|
# Load in pretrained weights to resume from
|
||
|
if resume_path is not None:
|
||
|
_resume_model(model, resume_path, epoch_resume)
|
||
|
else:
|
||
|
# Without '--resume-path' the '--epoch-resume' argument is ignored
|
||
|
epoch_resume = 0
|
||
|
|
||
|
# TODO: move this to logger function?
|
||
|
tracker = ProgressTracker(frequency=10000)
|
||
|
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
|
||
|
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
||
|
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
|
||
|
|
||
|
def _save_model(epoch, is_temp=False):
|
||
|
is_temp_str = ".temp" if is_temp else ""
|
||
|
with model.use_params(optimizer.averages):
|
||
|
with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
|
||
|
file_.write(model.get_ref("tok2vec").to_bytes())
|
||
|
log = {
|
||
|
"nr_word": tracker.nr_word,
|
||
|
"loss": tracker.loss,
|
||
|
"epoch_loss": tracker.epoch_loss,
|
||
|
"epoch": epoch,
|
||
|
}
|
||
|
with (output_dir / "log.jsonl").open("a") as file_:
|
||
|
file_.write(srsly.json_dumps(log) + "\n")
|
||
|
|
||
|
objective = create_objective(P["objective"])
|
||
|
# TODO: I think we probably want this to look more like the
|
||
|
# 'create_train_batches' function?
|
||
|
for epoch in range(epoch_resume, P["max_epochs"]):
|
||
|
for batch_id, batch in enumerate(batcher(corpus(nlp))):
|
||
|
docs = ensure_docs(batch)
|
||
|
loss = make_update(model, docs, optimizer, objective)
|
||
|
progress = tracker.update(epoch, loss, docs)
|
||
|
if progress:
|
||
|
msg.row(progress, **row_settings)
|
||
|
if P["n_save_every"] and (batch_id % P["n_save_every"] == 0):
|
||
|
_save_model(epoch, is_temp=True)
|
||
|
_save_model(epoch)
|
||
|
tracker.epoch_loss = 0.0
|
||
|
|
||
|
|
||
|
def ensure_docs(examples_or_docs: Iterable[Union[Doc, Example]]) -> List[Doc]:
|
||
|
docs = []
|
||
|
for eg_or_doc in examples_or_docs:
|
||
|
if isinstance(eg_or_doc, Doc):
|
||
|
docs.append(eg_or_doc)
|
||
|
else:
|
||
|
docs.append(eg_or_doc.reference)
|
||
|
return docs
|
||
|
|
||
|
|
||
|
def _resume_model(
|
||
|
model: Model,
|
||
|
resume_path: Path,
|
||
|
epoch_resume: int,
|
||
|
logger: Callable[[Any], Any] = logger,
|
||
|
) -> None:
|
||
|
logger.info(f"Resume training tok2vec from: {resume_path}")
|
||
|
with resume_path.open("rb") as file_:
|
||
|
weights_data = file_.read()
|
||
|
model.get_ref("tok2vec").from_bytes(weights_data)
|
||
|
# Parse the epoch number from the given weight file
|
||
|
model_name = re.search(r"model\d+\.bin", str(resume_path))
|
||
|
if model_name:
|
||
|
# Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
|
||
|
epoch_resume = int(model_name.group(0)[5:][:-4]) + 1
|
||
|
logger.info(f"Resuming from epoch: {epoch_resume}")
|
||
|
else:
|
||
|
logger.info(f"Resuming from epoch: {epoch_resume}")
|
||
|
|
||
|
|
||
|
def make_update(
|
||
|
model: Model, docs: Iterable[Doc], optimizer: Optimizer, objective_func: Callable
|
||
|
) -> float:
|
||
|
"""Perform an update over a single batch of documents.
|
||
|
|
||
|
docs (iterable): A batch of `Doc` objects.
|
||
|
optimizer (callable): An optimizer.
|
||
|
RETURNS loss: A float for the loss.
|
||
|
"""
|
||
|
predictions, backprop = model.begin_update(docs)
|
||
|
loss, gradients = objective_func(model.ops, docs, predictions)
|
||
|
backprop(gradients)
|
||
|
model.finish_update(optimizer)
|
||
|
# Don't want to return a cupy object here
|
||
|
# The gradients are modified in-place by the BERT MLM,
|
||
|
# so we get an accurate loss
|
||
|
return float(loss)
|
||
|
|
||
|
|
||
|
def create_objective(config: Config):
|
||
|
"""Create the objective for pretraining.
|
||
|
|
||
|
We'd like to replace this with a registry function but it's tricky because
|
||
|
we're also making a model choice based on this. For now we hard-code support
|
||
|
for two types (characters, vectors). For characters you can specify
|
||
|
n_characters, for vectors you can specify the loss.
|
||
|
|
||
|
Bleh.
|
||
|
"""
|
||
|
objective_type = config["type"]
|
||
|
if objective_type == "characters":
|
||
|
return partial(get_characters_loss, nr_char=config["n_characters"])
|
||
|
elif objective_type == "vectors":
|
||
|
if config["loss"] == "cosine":
|
||
|
distance = CosineDistance(normalize=True, ignore_zeros=True)
|
||
|
return partial(get_vectors_loss, distance=distance)
|
||
|
elif config["loss"] == "L2":
|
||
|
distance = L2Distance(normalize=True, ignore_zeros=True)
|
||
|
return partial(get_vectors_loss, distance=distance)
|
||
|
else:
|
||
|
raise ValueError("Unexpected loss type", config["loss"])
|
||
|
else:
|
||
|
raise ValueError("Unexpected objective_type", objective_type)
|
||
|
|
||
|
|
||
|
def get_vectors_loss(ops, docs, prediction, distance):
|
||
|
"""Compute a loss based on a distance between the documents' vectors and
|
||
|
the prediction.
|
||
|
"""
|
||
|
# The simplest way to implement this would be to vstack the
|
||
|
# token.vector values, but that's a bit inefficient, especially on GPU.
|
||
|
# Instead we fetch the index into the vectors table for each of our tokens,
|
||
|
# and look them up all at once. This prevents data copying.
|
||
|
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
||
|
target = docs[0].vocab.vectors.data[ids]
|
||
|
d_target, loss = distance(prediction, target)
|
||
|
return loss, d_target
|
||
|
|
||
|
|
||
|
def get_characters_loss(ops, docs, prediction, nr_char):
|
||
|
"""Compute a loss based on a number of characters predicted from the docs."""
|
||
|
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
|
||
|
target_ids = target_ids.reshape((-1,))
|
||
|
target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
|
||
|
target = target.reshape((-1, 256 * nr_char))
|
||
|
diff = prediction - target
|
||
|
loss = (diff ** 2).sum()
|
||
|
d_target = diff / float(prediction.shape[0])
|
||
|
return loss, d_target
|
||
|
|
||
|
|
||
|
def create_pretraining_model(nlp, pretrain_config):
|
||
|
"""Define a network for the pretraining. We simply add an output layer onto
|
||
|
the tok2vec input model. The tok2vec input model needs to be a model that
|
||
|
takes a batch of Doc objects (as a list), and returns a list of arrays.
|
||
|
Each array in the output needs to have one row per token in the doc.
|
||
|
The actual tok2vec layer is stored as a reference, and only this bit will be
|
||
|
serialized to file and read back in when calling the 'train' command.
|
||
|
"""
|
||
|
component = nlp.get_pipe(pretrain_config["component"])
|
||
|
if pretrain_config.get("layer"):
|
||
|
tok2vec = component.model.get_ref(pretrain_config["layer"])
|
||
|
else:
|
||
|
tok2vec = component.model
|
||
|
|
||
|
# TODO
|
||
|
maxout_pieces = 3
|
||
|
hidden_size = 300
|
||
|
if pretrain_config["objective"]["type"] == "vectors":
|
||
|
model = build_cloze_multi_task_model(
|
||
|
nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
|
||
|
)
|
||
|
elif pretrain_config["objective"]["type"] == "characters":
|
||
|
model = build_cloze_characters_multi_task_model(
|
||
|
nlp.vocab,
|
||
|
tok2vec,
|
||
|
hidden_size=hidden_size,
|
||
|
maxout_pieces=maxout_pieces,
|
||
|
nr_char=pretrain_config["objective"]["n_characters"],
|
||
|
)
|
||
|
model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
|
||
|
set_dropout_rate(model, pretrain_config["dropout"])
|
||
|
return model
|
||
|
|
||
|
|
||
|
class ProgressTracker:
|
||
|
def __init__(self, frequency=1000000):
|
||
|
self.loss = 0.0
|
||
|
self.prev_loss = 0.0
|
||
|
self.nr_word = 0
|
||
|
self.words_per_epoch = Counter()
|
||
|
self.frequency = frequency
|
||
|
self.last_time = time.time()
|
||
|
self.last_update = 0
|
||
|
self.epoch_loss = 0.0
|
||
|
|
||
|
def update(self, epoch, loss, docs):
|
||
|
self.loss += loss
|
||
|
self.epoch_loss += loss
|
||
|
words_in_batch = sum(len(doc) for doc in docs)
|
||
|
self.words_per_epoch[epoch] += words_in_batch
|
||
|
self.nr_word += words_in_batch
|
||
|
words_since_update = self.nr_word - self.last_update
|
||
|
if words_since_update >= self.frequency:
|
||
|
wps = words_since_update / (time.time() - self.last_time)
|
||
|
self.last_update = self.nr_word
|
||
|
self.last_time = time.time()
|
||
|
loss_per_word = self.loss - self.prev_loss
|
||
|
status = (
|
||
|
epoch,
|
||
|
self.nr_word,
|
||
|
_smart_round(self.loss, width=10),
|
||
|
_smart_round(loss_per_word, width=6),
|
||
|
int(wps),
|
||
|
)
|
||
|
self.prev_loss = float(self.loss)
|
||
|
return status
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _smart_round(
|
||
|
figure: Union[float, int], width: int = 10, max_decimal: int = 4
|
||
|
) -> str:
|
||
|
"""Round large numbers as integers, smaller numbers as decimals."""
|
||
|
n_digits = len(str(int(figure)))
|
||
|
n_decimal = width - (n_digits + 1)
|
||
|
if n_decimal <= 1:
|
||
|
return str(int(figure))
|
||
|
else:
|
||
|
n_decimal = min(n_decimal, max_decimal)
|
||
|
format_str = "%." + str(n_decimal) + "f"
|
||
|
return format_str % figure
|