2020-09-28 13:09:59 +00:00
|
|
|
from typing import Union, Dict, Optional, Any, List, Callable
|
|
|
|
from thinc.api import Config, fix_random_seed, set_gpu_allocator
|
|
|
|
from thinc.api import ConfigValidationError
|
|
|
|
from pathlib import Path
|
|
|
|
import srsly
|
|
|
|
|
|
|
|
from .loop import create_before_to_disk_callback
|
|
|
|
from ..language import Language
|
|
|
|
from ..lookups import Lookups
|
|
|
|
from ..errors import Errors
|
|
|
|
from ..schemas import ConfigSchemaTraining, ConfigSchemaInit, ConfigSchemaPretrain
|
|
|
|
from ..util import registry, load_model_from_config, resolve_dot_names
|
|
|
|
from ..util import load_model, ensure_path, logger, OOV_RANK, DEFAULT_OOV_PROB
|
|
|
|
|
|
|
|
|
|
|
|
def init_nlp(
|
|
|
|
config: Config,
|
|
|
|
*,
|
|
|
|
use_gpu: int = -1,
|
|
|
|
logger: Callable[[Any], Any] = logger,
|
|
|
|
on_success: Callable[[str], None] = lambda x: None,
|
|
|
|
) -> Language:
|
|
|
|
raw_config = config
|
|
|
|
config = raw_config.interpolate()
|
|
|
|
if config["training"]["seed"] is not None:
|
|
|
|
fix_random_seed(config["training"]["seed"])
|
|
|
|
allocator = config["training"]["gpu_allocator"]
|
|
|
|
if use_gpu >= 0 and allocator:
|
|
|
|
set_gpu_allocator(allocator)
|
|
|
|
# Use original config here before it's resolved to functions
|
|
|
|
sourced_components = get_sourced_components(config)
|
|
|
|
nlp = load_model_from_config(raw_config, auto_fill=True)
|
|
|
|
on_success("Set up nlp object from config")
|
|
|
|
config = nlp.config.interpolate()
|
|
|
|
# Resolve all training-relevant sections using the filled nlp config
|
|
|
|
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
|
|
|
|
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
|
|
|
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
|
|
|
|
I = registry.resolve(config["initialize"], schema=ConfigSchemaInit)
|
|
|
|
V = I["vocab"]
|
|
|
|
init_vocab(nlp, data=V["data"], lookups=V["lookups"], vectors=V["vectors"])
|
|
|
|
optimizer = T["optimizer"]
|
|
|
|
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
|
|
|
|
# Components that shouldn't be updated during training
|
|
|
|
frozen_components = T["frozen_components"]
|
|
|
|
# Sourced components that require resume_training
|
|
|
|
resume_components = [p for p in sourced_components if p not in frozen_components]
|
|
|
|
logger.info(f"Pipeline: {nlp.pipe_names}")
|
|
|
|
if resume_components:
|
|
|
|
with nlp.select_pipes(enable=resume_components):
|
|
|
|
logger.info(f"Resuming training for: {resume_components}")
|
|
|
|
nlp.resume_training(sgd=optimizer)
|
|
|
|
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
|
|
|
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
|
|
|
on_success(f"Initialized pipeline components")
|
|
|
|
# Verify the config after calling 'begin_training' to ensure labels
|
|
|
|
# are properly initialized
|
|
|
|
verify_config(nlp)
|
|
|
|
if "pretraining" in config and config["pretraining"]:
|
|
|
|
P = registry.resolve(config["pretraining"], schema=ConfigSchemaPretrain)
|
|
|
|
loaded = add_tok2vec_weights(nlp, P, I)
|
|
|
|
if loaded and P["component"]:
|
|
|
|
on_success(f"Loaded pretrained weights into component '{P['component']}'")
|
|
|
|
nlp = before_to_disk(nlp)
|
|
|
|
return nlp
|
|
|
|
|
|
|
|
|
|
|
|
def must_reinitialize(train_config: Config, init_config: Config) -> bool:
|
|
|
|
# TODO: do this better and more fine-grained
|
|
|
|
return train_config.interpolate().to_str() == init_config.interpolate().to_str()
|
|
|
|
|
|
|
|
|
|
|
|
def init_vocab(
|
|
|
|
nlp: Language,
|
|
|
|
*,
|
|
|
|
data: Optional[Path] = None,
|
|
|
|
lookups: Optional[Lookups] = None,
|
|
|
|
vectors: Optional[str] = None,
|
|
|
|
on_success: Callable[[str], None] = lambda x: None,
|
|
|
|
) -> Language:
|
|
|
|
if lookups:
|
|
|
|
nlp.vocab.lookups = lookups
|
|
|
|
on_success(f"Added vocab lookups: {', '.join(lookups.tables)}")
|
|
|
|
data_path = ensure_path(data)
|
|
|
|
if data_path is not None:
|
|
|
|
lex_attrs = srsly.read_jsonl(data_path)
|
|
|
|
for lexeme in nlp.vocab:
|
|
|
|
lexeme.rank = OOV_RANK
|
|
|
|
for attrs in lex_attrs:
|
|
|
|
if "settings" in attrs:
|
|
|
|
continue
|
|
|
|
lexeme = nlp.vocab[attrs["orth"]]
|
|
|
|
lexeme.set_attrs(**attrs)
|
|
|
|
if len(nlp.vocab):
|
|
|
|
oov_prob = min(lex.prob for lex in nlp.vocab) - 1
|
|
|
|
else:
|
|
|
|
oov_prob = DEFAULT_OOV_PROB
|
|
|
|
nlp.vocab.cfg.update({"oov_prob": oov_prob})
|
|
|
|
on_success(f"Added {len(nlp.vocab)} lexical entries to the vocab")
|
|
|
|
on_success("Created vocabulary")
|
|
|
|
if vectors is not None:
|
|
|
|
load_vectors_into_model(nlp, vectors)
|
|
|
|
on_success(f"Added vectors: {vectors}")
|
|
|
|
|
|
|
|
|
|
|
|
def load_vectors_into_model(
|
|
|
|
nlp: "Language", name: Union[str, Path], *, add_strings: bool = True
|
|
|
|
) -> None:
|
|
|
|
"""Load word vectors from an installed model or path into a model instance."""
|
|
|
|
try:
|
|
|
|
vectors_nlp = load_model(name)
|
|
|
|
except ConfigValidationError as e:
|
|
|
|
title = f"Config validation error for vectors {name}"
|
|
|
|
desc = (
|
|
|
|
"This typically means that there's a problem in the config.cfg included "
|
|
|
|
"with the packaged vectors. Make sure that the vectors package you're "
|
|
|
|
"loading is compatible with the current version of spaCy."
|
|
|
|
)
|
|
|
|
err = ConfigValidationError.from_error(config=None, title=title, desc=desc)
|
|
|
|
raise err from None
|
|
|
|
nlp.vocab.vectors = vectors_nlp.vocab.vectors
|
|
|
|
if add_strings:
|
|
|
|
# I guess we should add the strings from the vectors_nlp model?
|
|
|
|
# E.g. if someone does a similarity query, they might expect the strings.
|
|
|
|
for key in nlp.vocab.vectors.key2row:
|
|
|
|
if key in vectors_nlp.vocab.strings:
|
|
|
|
nlp.vocab.strings.add(vectors_nlp.vocab.strings[key])
|
|
|
|
|
|
|
|
|
|
|
|
def add_tok2vec_weights(
|
|
|
|
nlp: Language, pretrain_config: Dict[str, Any], vocab_config: Dict[str, Any]
|
|
|
|
) -> bool:
|
|
|
|
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
|
|
|
|
P = pretrain_config
|
|
|
|
V = vocab_config
|
|
|
|
weights_data = None
|
|
|
|
init_tok2vec = ensure_path(V["init_tok2vec"])
|
|
|
|
if init_tok2vec is not None:
|
|
|
|
if P["objective"].get("type") == "vectors" and not V["vectors"]:
|
|
|
|
err = 'need initialize.vectors if pretraining.objective.type is "vectors"'
|
|
|
|
errors = [{"loc": ["initialize", "vectors"], "msg": err}]
|
|
|
|
raise ConfigValidationError(config=nlp.config, errors=errors)
|
|
|
|
if not init_tok2vec.exists():
|
|
|
|
err = f"can't find pretrained tok2vec: {init_tok2vec}"
|
|
|
|
errors = [{"loc": ["initialize", "vectors", "init_tok2vec"], "msg": err}]
|
|
|
|
raise ConfigValidationError(config=nlp.config, errors=errors)
|
|
|
|
with init_tok2vec.open("rb") as file_:
|
|
|
|
weights_data = file_.read()
|
|
|
|
if weights_data is not None:
|
|
|
|
tok2vec_component = P["component"]
|
|
|
|
if tok2vec_component is None:
|
|
|
|
desc = (
|
|
|
|
f"To use pretrained tok2vec weights, [pretraining.component] "
|
|
|
|
f"needs to specify the component that should load them."
|
|
|
|
)
|
|
|
|
err = "component can't be null"
|
|
|
|
errors = [{"loc": ["pretraining", "component"], "msg": err}]
|
|
|
|
raise ConfigValidationError(
|
|
|
|
config=nlp.config["pretraining"], errors=errors, desc=desc
|
|
|
|
)
|
|
|
|
layer = nlp.get_pipe(tok2vec_component).model
|
|
|
|
if P["layer"]:
|
|
|
|
layer = layer.get_ref(P["layer"])
|
|
|
|
layer.from_bytes(weights_data)
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def verify_config(nlp: Language) -> None:
|
|
|
|
"""Perform additional checks based on the config, loaded nlp object and training data."""
|
|
|
|
# TODO: maybe we should validate based on the actual components, the list
|
|
|
|
# in config["nlp"]["pipeline"] instead?
|
|
|
|
for pipe_config in nlp.config["components"].values():
|
|
|
|
# We can't assume that the component name == the factory
|
|
|
|
factory = pipe_config["factory"]
|
|
|
|
if factory == "textcat":
|
|
|
|
verify_textcat_config(nlp, pipe_config)
|
|
|
|
|
|
|
|
|
|
|
|
def verify_textcat_config(nlp: Language, pipe_config: Dict[str, Any]) -> None:
|
|
|
|
# if 'positive_label' is provided: double check whether it's in the data and
|
|
|
|
# the task is binary
|
|
|
|
if pipe_config.get("positive_label"):
|
|
|
|
textcat_labels = nlp.get_pipe("textcat").labels
|
|
|
|
pos_label = pipe_config.get("positive_label")
|
|
|
|
if pos_label not in textcat_labels:
|
|
|
|
raise ValueError(
|
|
|
|
Errors.E920.format(pos_label=pos_label, labels=textcat_labels)
|
|
|
|
)
|
|
|
|
if len(list(textcat_labels)) != 2:
|
|
|
|
raise ValueError(
|
|
|
|
Errors.E919.format(pos_label=pos_label, labels=textcat_labels)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_sourced_components(config: Union[Dict[str, Any], Config]) -> List[str]:
|
|
|
|
"""RETURNS (List[str]): All sourced components in the original config,
|
|
|
|
e.g. {"source": "en_core_web_sm"}. If the config contains a key
|
|
|
|
"factory", we assume it refers to a component factory.
|
|
|
|
"""
|
|
|
|
return [
|
|
|
|
name
|
|
|
|
for name, cfg in config.get("components", {}).items()
|
|
|
|
if "factory" not in cfg and "source" in cfg
|
|
|
|
]
|