mirror of https://github.com/pyodide/pyodide.git
12 lines
447 B
Python
12 lines
447 B
Python
#setup: import numpy as np ; N = 100000 ; a = np.random.random(N); b = 0.1; c =1.1
|
|
#run: log_likelihood(a, b, c)
|
|
#from: http://arogozhnikov.github.io/2015/09/08/SpeedBenchmarks.html
|
|
import numpy
|
|
|
|
#pythran export log_likelihood(float64[], float64, float64)
|
|
def log_likelihood(data, mean, sigma):
|
|
s = (data - mean) ** 2 / (2 * (sigma ** 2))
|
|
pdfs = numpy.exp(- s)
|
|
pdfs /= numpy.sqrt(2 * numpy.pi) * sigma
|
|
return numpy.log(pdfs).sum()
|