pyodide/benchmark/benchmarks/growcut.py

57 lines
1.9 KiB
Python

#from: http://continuum.io/blog/numba_performance
#setup: N = 10 ; import numpy as np ; image = np.random.rand(N, N, 3) ; state = np.zeros((N, N, 2)) ; state_next = np.empty_like(state) ; state[0, 0, 0] = state[0, 0, 1] = 1
#run: growcut(image, state, state_next, 2)
#pythran export growcut(float[][][], float[][][], float[][][], int)
import math
import numpy as np
def window_floor(idx, radius):
if radius > idx:
return 0
else:
return idx - radius
def window_ceil(idx, ceil, radius):
if idx + radius > ceil:
return ceil
else:
return idx + radius
def growcut(image, state, state_next, window_radius):
changes = 0
sqrt_3 = math.sqrt(3.0)
height = image.shape[0]
width = image.shape[1]
for j in range(width):
for i in range(height):
winning_colony = state[i, j, 0]
defense_strength = state[i, j, 1]
for jj in range(window_floor(j, window_radius),
window_ceil(j+1, width, window_radius)):
for ii in range(window_floor(i, window_radius),
window_ceil(i+1, height, window_radius)):
if (ii != i and jj != j):
d = image[i, j, 0] - image[ii, jj, 0]
s = d * d
for k in range(1, 3):
d = image[i, j, k] - image[ii, jj, k]
s += d * d
gval = 1.0 - math.sqrt(s)/sqrt_3
attack_strength = gval * state[ii, jj, 1]
if attack_strength > defense_strength:
defense_strength = attack_strength
winning_colony = state[ii, jj, 0]
changes += 1
state_next[i, j, 0] = winning_colony
state_next[i, j, 1] = defense_strength
return changes