pyodide/benchmark/benchmarks/diffusion.py

19 lines
622 B
Python

# setup: import numpy as np;lx,ly=(2**6,2**6);u=np.zeros([lx,ly],dtype=np.double);u[lx//2,ly//2]=1000.0;tempU=np.zeros([lx,ly],dtype=np.double) # noqa
# run: diffusion(u,tempU,100)
# pythran export diffusion(float [][], float [][], int)
def diffusion(u, tempU, iterNum):
"""
Apply Numpy matrix for the Forward-Euler Approximation
"""
mu = .1
for n in range(iterNum):
tempU[1:-1, 1:-1] = u[1:-1, 1:-1] + mu * (
u[2:, 1:-1] - 2 * u[1:-1, 1:-1] + u[0:-2, 1:-1] +
u[1:-1, 2:] - 2 * u[1:-1, 1:-1] + u[1:-1, 0:-2])
u[:, :] = tempU[:, :]
tempU[:, :] = 0.0