package: name: scikit-learn version: 1.0.2 source: url: https://files.pythonhosted.org/packages/75/44/074b780d8ac0b0899937e9b8ba6d5d8873a71b99aa915219251ef85a8890/scikit-learn-1.0.2.tar.gz sha256: b5870959a5484b614f26d31ca4c17524b1b0317522199dc985c3b4256e030767 patches: - patches/disable-openmp.patch - patches/0001-Cythonize-_cython_blas.pyx-with-include-path-pointin.patch build: cflags: -Wno-implicit-function-declaration requirements: run: - numpy - scipy - joblib - threadpoolctl test: imports: - sklearn - sklearn.calibration - sklearn.cluster - sklearn.compose - sklearn.covariance - sklearn.cross_decomposition - sklearn.datasets - sklearn.decomposition - sklearn.discriminant_analysis - sklearn.dummy - sklearn.ensemble - sklearn.exceptions - sklearn.externals - sklearn.feature_extraction - sklearn.feature_selection - sklearn.gaussian_process - sklearn.impute - sklearn.isotonic - sklearn.kernel_approximation - sklearn.kernel_ridge - sklearn.linear_model - sklearn.manifold - sklearn.metrics - sklearn.mixture - sklearn.model_selection - sklearn.multiclass - sklearn.multioutput - sklearn.naive_bayes - sklearn.neighbors - sklearn.neural_network - sklearn.pipeline - sklearn.preprocessing - sklearn.random_projection - sklearn.semi_supervised - sklearn.svm - sklearn.tree - sklearn.utils