# setup: import numpy as np; image = np.zeros((64, 32), dtype = np.uint8) # run: mandel(-2.0, 1.0, -1.0, 1.0, image, 20) # pythran export mandel(float, float, float, float, uint8[][], int) def kernel(x, y, max_iters): """ Given the real and imaginary parts of a complex number, determine if it is a candidate for membership in the Mandelbrot set given a fixed number of iterations. """ c = complex(x, y) z = 0.0j for i in range(max_iters): z = z * z + c if (z.real * z.real + z.imag * z.imag) >= 4: return i return max_iters def mandel(min_x, max_x, min_y, max_y, image, iters): height = image.shape[0] width = image.shape[1] pixel_size_x = (max_x - min_x) / width pixel_size_y = (max_y - min_y) / height for x in range(width): real = min_x + x * pixel_size_x for y in range(height): imag = min_y + y * pixel_size_y color = kernel(real, imag, iters) image[y, x] = color