#setup: import numpy as np;lx,ly=(2**7,2**7);u=np.zeros([lx,ly],dtype=np.double);u[lx//2,ly//2]=1000.0;tempU=np.zeros([lx,ly],dtype=np.double) #run: diffusion(u,tempU,100) #pythran export diffusion(float [][], float [][], int) import numpy as np def diffusion(u, tempU, iterNum): """ Apply Numpy matrix for the Forward-Euler Approximation """ mu = .1 for n in range(iterNum): tempU[1:-1, 1:-1] = u[1:-1, 1:-1] + mu * ( u[2:, 1:-1] - 2 * u[1:-1, 1:-1] + u[0:-2, 1:-1] + u[1:-1, 2:] - 2 * u[1:-1, 1:-1] + u[1:-1, 0:-2]) u[:, :] = tempU[:, :] tempU[:, :] = 0.0