#from: http://stackoverflow.com/questions/19367488/converting-function-to-numbapro-cuda #setup: N = 10 ; import numpy ; a = numpy.random.rand(N,N) #run: fdtd(a,10) #pythran export fdtd(float[][], int) import numpy as np def fdtd(input_grid, steps): grid = input_grid.copy() old_grid = np.zeros_like(input_grid) previous_grid = np.zeros_like(input_grid) l_x = grid.shape[0] l_y = grid.shape[1] for i in range(steps): np.copyto(previous_grid, old_grid) np.copyto(old_grid, grid) for x in range(l_x): for y in range(l_y): grid[x,y] = 0.0 if 0 < x+1 < l_x: grid[x,y] += old_grid[x+1,y] if 0 < x-1 < l_x: grid[x,y] += old_grid[x-1,y] if 0 < y+1 < l_y: grid[x,y] += old_grid[x,y+1] if 0 < y-1 < l_y: grid[x,y] += old_grid[x,y-1] grid[x,y] /= 2.0 grid[x,y] -= previous_grid[x,y] return grid