# https://github.com/iskandr/parakeet/blob/master/benchmarks/nd_local_maxima.py # setup: import numpy as np ; shape = (3,2,3,2) ; x = np.arange(36, dtype=np.float64).reshape(*shape) # noqa # run: local_maxima(x) # pythran export local_maxima(float [][][][]) import numpy as np def wrap(pos, offset, bound): return (pos + offset) % bound def clamp(pos, offset, bound): return min(bound - 1, max(0, pos + offset)) def reflect(pos, offset, bound): idx = pos + offset return min(2 * (bound - 1) - idx, max(idx, -idx)) def local_maxima(data, mode=wrap): wsize = data.shape result = np.ones(data.shape, bool) for pos in np.ndindex(data.shape): myval = data[pos] for offset in np.ndindex(wsize): neighbor_idx = tuple( mode(p, o - w // 2, w) for (p, o, w) in zip(pos, offset, wsize) ) result[pos] &= data[neighbor_idx] <= myval return result