# setup: import numpy as np;lx,ly=(2**6,2**6);u=np.zeros([lx,ly],dtype=np.double);u[lx//2,ly//2]=1000.0;tempU=np.zeros([lx,ly],dtype=np.double) # noqa # run: diffusion(u,tempU,100) # pythran export diffusion(float [][], float [][], int) def diffusion(u, tempU, iterNum): """ Apply Numpy matrix for the Forward-Euler Approximation """ mu = 0.1 for n in range(iterNum): tempU[1:-1, 1:-1] = u[1:-1, 1:-1] + mu * ( u[2:, 1:-1] - 2 * u[1:-1, 1:-1] + u[0:-2, 1:-1] + u[1:-1, 2:] - 2 * u[1:-1, 1:-1] + u[1:-1, 0:-2] ) u[:, :] = tempU[:, :] tempU[:, :] = 0.0