def test_nlopt(selenium): selenium.load_package("nlopt") assert selenium.run( """ import numpy as np import nlopt # objective function def f(x, grad): x0 = x[0] x1 = x[1] y = 67.8306620138889-13.5689721666667*x0-3.83269458333333*x1+\ 0.720841066666667*x0**2+0.3427605*x0*x1+\ 0.0640322916666664*x1**2 grad[0] = 1.44168213333333*x0 + 0.3427605*x1 - 13.5689721666667 grad[1] = 0.3427605*x0 + 0.128064583333333*x1 - 3.83269458333333 return y # inequality constraint (constrained to be <= 0) def h(x, grad): x0 = x[0] x1 = x[1] z = -3.72589930555515+128.965158333333*x0+0.341479166666643*x1-\ 0.19642666666667*x0**2+2.78692500000002*x0*x1-\ 0.0000104166666686543*x1**2-468.897287036862 grad[0] = -0.39285333333334*x0 + 2.78692500000002*x1 + 128.965158333333 grad[1] = 2.78692500000002*x0 - 2.08333333373086e-5*x1 + 0.341479166666643 return z opt = nlopt.opt(nlopt.LD_SLSQP, 2) opt.set_min_objective(f) opt.set_lower_bounds(np.array([2.5, 7])) opt.set_upper_bounds(np.array([7.5, 15])) opt.add_inequality_constraint(h) opt.set_ftol_rel(1.0e-6) x0 = np.array([5, 11]) xopt = opt.optimize(x0) np.linalg.norm(xopt - np.array([2.746310775, 15.0])) < 1e-7 """ )