# non-native # setup: import matplotlib ; import numpy as np ; matplotlib.use('module://matplotlib_pyodide.wasm_backend') ; from matplotlib import pyplot as plt ; import matplotlib.transforms as mtransforms # run: wasm_image_affine() # pythran export wasm_image_affine() import matplotlib import numpy as np matplotlib.use("module://matplotlib_pyodide.wasm_backend") import matplotlib.transforms as mtransforms # noqa: E402 from matplotlib import pyplot as plt # noqa: E402 def wasm_image_affine(): def get_image(): delta = 0.25 x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-(X**2) - Y**2) Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2) Z = Z1 - Z2 return Z def do_plot(ax, Z, transform): im = ax.imshow( Z, interpolation="none", origin="lower", extent=[-2, 4, -3, 2], clip_on=True ) trans_data = transform + ax.transData im.set_transform(trans_data) # display intended extent of the image x1, x2, y1, y2 = im.get_extent() ax.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], "y--", transform=trans_data) ax.set_xlim(-5, 5) ax.set_ylim(-4, 4) # prepare image and figure fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) Z = get_image() # image rotation do_plot(ax1, Z, mtransforms.Affine2D().rotate_deg(30)) # image skew do_plot(ax2, Z, mtransforms.Affine2D().skew_deg(30, 15)) # scale and reflection do_plot(ax3, Z, mtransforms.Affine2D().scale(-1, 0.5)) # everything and a translation do_plot( ax4, Z, mtransforms.Affine2D() .rotate_deg(30) .skew_deg(30, 15) .scale(-1, 0.5) .translate(0.5, -1), ) plt.show() plt.close("all") plt.clf()