# from: https://groups.google.com/forum/#!topic/parakeet-python/p-flp2kdE4U # setup: import numpy as np ;d = 10 ;re = 5 ;params = (d, re, np.ones((2*d, d+1, re)), np.ones((d, d+1, re)), np.ones((d, 2*d)), np.ones((d, 2*d)), np.ones((d+1, re, d)), np.ones((d+1, re, d)), 1) # noqa # run: slowparts(*params) # pythran export slowparts(int, int, float [][][], float [][][], float # [][], float [][], float [][][], float [][][], int) from numpy import zeros, power, tanh def slowparts(d, re, preDz, preWz, SRW, RSW, yxV, xyU, resid): """ computes the linear algebra intensive part of the gradients of the grae """ def fprime(x): return 1 - power(tanh(x), 2) partialDU = zeros((d + 1, re, 2 * d, d)) for k in range(2 * d): for i in range(d): partialDU[:, :, k, i] = ( fprime(preDz[k]) * fprime(preWz[i]) * (SRW[i, k] + RSW[i, k]) * yxV[:, :, i]) return partialDU