# setup: N=10 # run: julia(1., 1., N, 1.5, 10., 1e4) # pythran export julia(float, float, int, float, float, float) import numpy as np def kernel(zr, zi, cr, ci, lim, cutoff): ''' Computes the number of iterations `n` such that |z_n| > `lim`, where `z_n = z_{n-1}**2 + c`. ''' count = 0 while ((zr * zr + zi * zi) < (lim * lim)) and count < cutoff: zr, zi = zr * zr - zi * zi + cr, 2 * zr * zi + ci count += 1 return count def julia(cr, ci, N, bound=1.5, lim=1000., cutoff=1e6): ''' Pure Python calculation of the Julia set for a given `c`. No NumPy array operations are used. ''' julia = np.empty((N, N), np.uint32) grid_x = np.linspace(-bound, bound, N) for i, x in enumerate(grid_x): for j, y in enumerate(grid_x): julia[i, j] = kernel(x, y, cr, ci, lim, cutoff) return julia