import pytest from pytest_pyodide.fixture import selenium_context_manager @pytest.mark.driver_timeout(40) @pytest.mark.xfail_browsers( chrome="Times out in chrome", firefox="Times out in firefox" ) def test_scikit_learn(selenium_module_scope): with selenium_context_manager(selenium_module_scope) as selenium: selenium.load_package("scikit-learn") assert ( selenium.run( """ import numpy as np import sklearn from sklearn.linear_model import LogisticRegression rng = np.random.RandomState(42) X = rng.rand(100, 20) y = rng.randint(5, size=100) estimator = LogisticRegression(solver='liblinear') estimator.fit(X, y) print(estimator.predict(X)) estimator.score(X, y) """ ) > 0 ) @pytest.mark.driver_timeout(40) @pytest.mark.xfail_browsers( chrome="Times out in chrome", firefox="Times out in firefox" ) def test_logistic_regression(selenium_module_scope): with selenium_context_manager(selenium_module_scope) as selenium: selenium.load_package("scikit-learn") selenium.run( """ from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression X, y = load_iris(return_X_y=True) clf = LogisticRegression(random_state=0).fit(X, y) print(clf.predict(X[:2, :])) print(clf.predict_proba(X[:2, :])) print(clf.score(X, y)) """ )