package: name: scikit-learn version: 1.1.0 source: url: https://files.pythonhosted.org/packages/8b/99/b1ec652f2d60a13871a3053f312f9d78977be57e420f2a49d52ba503f1f4/scikit-learn-1.1.0.tar.gz sha256: 80f9904f5b1356adfc32406725dd94c8cc9c8d265047d98390033a6c238cbb29 patches: - patches/0001-Cythonize-_cython_blas.pyx-with-include-path-pointin.patch - patches/0002-Disable-omp.patch build: cflags: -Wno-implicit-function-declaration requirements: run: - scipy - joblib - threadpoolctl test: imports: - sklearn - sklearn.calibration - sklearn.cluster - sklearn.compose - sklearn.covariance - sklearn.cross_decomposition - sklearn.datasets - sklearn.decomposition - sklearn.discriminant_analysis - sklearn.dummy - sklearn.ensemble - sklearn.exceptions - sklearn.externals - sklearn.feature_extraction - sklearn.feature_selection - sklearn.gaussian_process - sklearn.impute - sklearn.isotonic - sklearn.kernel_approximation - sklearn.kernel_ridge - sklearn.linear_model - sklearn.manifold - sklearn.metrics - sklearn.mixture - sklearn.model_selection - sklearn.multiclass - sklearn.multioutput - sklearn.naive_bayes - sklearn.neighbors - sklearn.neural_network - sklearn.pipeline - sklearn.preprocessing - sklearn.random_projection - sklearn.semi_supervised - sklearn.svm - sklearn.tree - sklearn.utils