2018-10-03 18:59:01 +00:00
|
|
|
# http://stackoverflow.com/questions/19367488/converting-function-to-numbapro-cuda
|
|
|
|
# setup: N = 10 ; import numpy ; a = numpy.random.rand(N,N)
|
|
|
|
# run: fdtd(a,10)
|
2018-04-05 22:07:33 +00:00
|
|
|
|
2018-10-03 18:59:01 +00:00
|
|
|
# pythran export fdtd(float[][], int)
|
2018-04-05 22:07:33 +00:00
|
|
|
import numpy as np
|
|
|
|
|
2018-10-03 18:59:01 +00:00
|
|
|
|
2018-04-05 22:07:33 +00:00
|
|
|
def fdtd(input_grid, steps):
|
|
|
|
grid = input_grid.copy()
|
|
|
|
old_grid = np.zeros_like(input_grid)
|
|
|
|
previous_grid = np.zeros_like(input_grid)
|
|
|
|
|
|
|
|
l_x = grid.shape[0]
|
|
|
|
l_y = grid.shape[1]
|
|
|
|
|
|
|
|
for i in range(steps):
|
|
|
|
np.copyto(previous_grid, old_grid)
|
|
|
|
np.copyto(old_grid, grid)
|
|
|
|
|
|
|
|
for x in range(l_x):
|
|
|
|
for y in range(l_y):
|
2018-10-03 18:59:01 +00:00
|
|
|
grid[x, y] = 0.0
|
|
|
|
if 0 < x + 1 < l_x:
|
|
|
|
grid[x, y] += old_grid[x + 1, y]
|
|
|
|
if 0 < x - 1 < l_x:
|
|
|
|
grid[x, y] += old_grid[x - 1, y]
|
|
|
|
if 0 < y + 1 < l_y:
|
|
|
|
grid[x, y] += old_grid[x, y + 1]
|
|
|
|
if 0 < y - 1 < l_y:
|
|
|
|
grid[x, y] += old_grid[x, y - 1]
|
|
|
|
|
|
|
|
grid[x, y] /= 2.0
|
|
|
|
grid[x, y] -= previous_grid[x, y]
|
2018-04-05 22:07:33 +00:00
|
|
|
|
|
|
|
return grid
|