pyodide/packages/pandas/test_pandas.py

73 lines
2.1 KiB
Python
Raw Normal View History

import random
from typing import Any
2018-06-23 11:53:56 +00:00
import pytest
def generate_largish_json(n_rows: int = 91746) -> dict[str, Any]:
# with n_rows = 91746, the output JSON size will be ~15 MB/10k rows
# Note: we don't fix the random seed here, but the actual values
# shouldn't matter
columns = [
("column0", lambda: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"),
(
"column1",
lambda: random.choice(
[
"notification-interval-longer",
"notification-interval-short",
"control",
]
),
),
("column2", lambda: random.choice([True, False])),
("column3", lambda: random.randint(0, 4)),
("column4", lambda: random.randint(0, 4)),
("column5", lambda: random.randint(0, 4)),
("column6", lambda: random.randint(0, 4)),
("column7", lambda: random.randint(0, 4)),
]
data = {}
for name, generator in columns:
data[name] = [generator() for _ in range(n_rows)]
return data
@pytest.mark.driver_timeout(30)
2018-08-17 09:57:42 +00:00
def test_extra_import(selenium, request):
2018-05-23 11:23:49 +00:00
selenium.load_package("pandas")
2021-11-02 13:54:16 +00:00
selenium.run("from pandas import Series, DataFrame")
2018-09-12 14:14:51 +00:00
@pytest.mark.xfail_browsers(
chrome="test_load_largish_file triggers a fatal runtime error in Chrome 89 see #1495",
node="open_url doesn't work in node",
)
@pytest.mark.driver_timeout(40)
@pytest.mark.skip_refcount_check
def test_load_largish_file(selenium_standalone, request, httpserver):
2018-09-12 14:14:51 +00:00
selenium = selenium_standalone
selenium.load_package("pandas")
selenium.load_package("matplotlib")
n_rows = 91746
data = generate_largish_json(n_rows)
httpserver.expect_oneshot_request("/pandas_largish").respond_with_json(
data, headers={"Access-Control-Allow-Origin": "*"}
)
request_url = httpserver.url_for("/pandas_largish")
selenium.run(
f"""
import pyodide.http
2018-09-12 14:14:51 +00:00
import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_json(pyodide.http.open_url('{request_url}'))
assert df.shape == ({n_rows}, 8)
"""
)