pyodide/emsdk/files/preamble.js

2483 lines
88 KiB
JavaScript
Raw Normal View History

// === Preamble library stuff ===
// Documentation for the public APIs defined in this file must be updated in:
// site/source/docs/api_reference/preamble.js.rst
// A prebuilt local version of the documentation is available at:
// site/build/text/docs/api_reference/preamble.js.txt
// You can also build docs locally as HTML or other formats in site/
// An online HTML version (which may be of a different version of Emscripten)
// is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html
#if BENCHMARK
Module.realPrint = Module.print;
Module.print = Module.printErr = function(){};
#endif
#if SAFE_HEAP
function getSafeHeapType(bytes, isFloat) {
switch (bytes) {
case 1: return 'i8';
case 2: return 'i16';
case 4: return isFloat ? 'float' : 'i32';
case 8: return 'double';
default: assert(0);
}
}
#if SAFE_HEAP_LOG
var SAFE_HEAP_COUNTER = 0;
#endif
function SAFE_HEAP_STORE(dest, value, bytes, isFloat) {
#if SAFE_HEAP_LOG
Module.print('SAFE_HEAP store: ' + [dest, value, bytes, isFloat, SAFE_HEAP_COUNTER++]);
#endif
if (dest <= 0) abort('segmentation fault storing ' + bytes + ' bytes to address ' + dest);
if (dest % bytes !== 0) abort('alignment error storing to address ' + dest + ', which was expected to be aligned to a multiple of ' + bytes);
if (staticSealed) {
if (dest + bytes > HEAP32[DYNAMICTOP_PTR>>2]) abort('segmentation fault, exceeded the top of the available dynamic heap when storing ' + bytes + ' bytes to address ' + dest + '. STATICTOP=' + STATICTOP + ', DYNAMICTOP=' + HEAP32[DYNAMICTOP_PTR>>2]);
assert(DYNAMICTOP_PTR);
assert(HEAP32[DYNAMICTOP_PTR>>2] <= TOTAL_MEMORY);
} else {
if (dest + bytes > STATICTOP) abort('segmentation fault, exceeded the top of the available static heap when storing ' + bytes + ' bytes to address ' + dest + '. STATICTOP=' + STATICTOP);
}
setValue(dest, value, getSafeHeapType(bytes, isFloat), 1);
}
function SAFE_HEAP_STORE_D(dest, value, bytes) {
SAFE_HEAP_STORE(dest, value, bytes, true);
}
function SAFE_HEAP_LOAD(dest, bytes, unsigned, isFloat) {
if (dest <= 0) abort('segmentation fault loading ' + bytes + ' bytes from address ' + dest);
if (dest % bytes !== 0) abort('alignment error loading from address ' + dest + ', which was expected to be aligned to a multiple of ' + bytes);
if (staticSealed) {
if (dest + bytes > HEAP32[DYNAMICTOP_PTR>>2]) abort('segmentation fault, exceeded the top of the available dynamic heap when loading ' + bytes + ' bytes from address ' + dest + '. STATICTOP=' + STATICTOP + ', DYNAMICTOP=' + HEAP32[DYNAMICTOP_PTR>>2]);
assert(DYNAMICTOP_PTR);
assert(HEAP32[DYNAMICTOP_PTR>>2] <= TOTAL_MEMORY);
} else {
if (dest + bytes > STATICTOP) abort('segmentation fault, exceeded the top of the available static heap when loading ' + bytes + ' bytes from address ' + dest + '. STATICTOP=' + STATICTOP);
}
var type = getSafeHeapType(bytes, isFloat);
var ret = getValue(dest, type, 1);
if (unsigned) ret = unSign(ret, parseInt(type.substr(1)), 1);
#if SAFE_HEAP_LOG
Module.print('SAFE_HEAP load: ' + [dest, ret, bytes, isFloat, unsigned, SAFE_HEAP_COUNTER++]);
#endif
return ret;
}
function SAFE_HEAP_LOAD_D(dest, bytes, unsigned) {
return SAFE_HEAP_LOAD(dest, bytes, unsigned, true);
}
function SAFE_FT_MASK(value, mask) {
var ret = value & mask;
if (ret !== value) {
abort('Function table mask error: function pointer is ' + value + ' which is masked by ' + mask + ', the likely cause of this is that the function pointer is being called by the wrong type.');
}
return ret;
}
function segfault() {
abort('segmentation fault');
}
function alignfault() {
abort('alignment fault');
}
function ftfault() {
abort('Function table mask error');
}
#endif
//========================================
// Runtime essentials
//========================================
var ABORT = 0; // whether we are quitting the application. no code should run after this. set in exit() and abort()
var EXITSTATUS = 0;
/** @type {function(*, string=)} */
function assert(condition, text) {
if (!condition) {
abort('Assertion failed: ' + text);
}
}
var globalScope = this;
// Returns the C function with a specified identifier (for C++, you need to do manual name mangling)
function getCFunc(ident) {
var func = Module['_' + ident]; // closure exported function
assert(func, 'Cannot call unknown function ' + ident + ', make sure it is exported');
return func;
}
var JSfuncs = {
// Helpers for cwrap -- it can't refer to Runtime directly because it might
// be renamed by closure, instead it calls JSfuncs['stackSave'].body to find
// out what the minified function name is.
'stackSave': function() {
stackSave()
},
'stackRestore': function() {
stackRestore()
},
// type conversion from js to c
'arrayToC' : function(arr) {
var ret = stackAlloc(arr.length);
writeArrayToMemory(arr, ret);
return ret;
},
'stringToC' : function(str) {
var ret = 0;
if (str !== null && str !== undefined && str !== 0) { // null string
// at most 4 bytes per UTF-8 code point, +1 for the trailing '\0'
var len = (str.length << 2) + 1;
ret = stackAlloc(len);
stringToUTF8(str, ret, len);
}
return ret;
}
};
// For fast lookup of conversion functions
var toC = {
'string': JSfuncs['stringToC'], 'array': JSfuncs['arrayToC']
};
// C calling interface.
function ccall (ident, returnType, argTypes, args, opts) {
var func = getCFunc(ident);
var cArgs = [];
var stack = 0;
#if ASSERTIONS
assert(returnType !== 'array', 'Return type should not be "array".');
#endif
if (args) {
for (var i = 0; i < args.length; i++) {
var converter = toC[argTypes[i]];
if (converter) {
if (stack === 0) stack = stackSave();
cArgs[i] = converter(args[i]);
} else {
cArgs[i] = args[i];
}
}
}
var ret = func.apply(null, cArgs);
#if ASSERTIONS
#if EMTERPRETIFY_ASYNC
if ((!opts || !opts.async) && typeof EmterpreterAsync === 'object') {
assert(!EmterpreterAsync.state, 'cannot start async op with normal JS calling ccall');
}
if (opts && opts.async) assert(!returnType, 'async ccalls cannot return values');
#endif
#endif
if (returnType === 'string') ret = Pointer_stringify(ret);
else if (returnType === 'boolean') ret = Boolean(ret);
if (stack !== 0) {
#if EMTERPRETIFY_ASYNC
if (opts && opts.async) {
EmterpreterAsync.asyncFinalizers.push(function() {
stackRestore(stack);
});
return;
}
#endif
stackRestore(stack);
}
return ret;
}
function cwrap (ident, returnType, argTypes) {
argTypes = argTypes || [];
var cfunc = getCFunc(ident);
// When the function takes numbers and returns a number, we can just return
// the original function
var numericArgs = argTypes.every(function(type){ return type === 'number'});
var numericRet = returnType !== 'string';
if (numericRet && numericArgs) {
return cfunc;
}
return function() {
return ccall(ident, returnType, argTypes, arguments);
}
}
/** @type {function(number, number, string, boolean=)} */
function setValue(ptr, value, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
#if SAFE_HEAP
if (noSafe) {
switch(type) {
case 'i1': {{{ makeSetValue('ptr', '0', 'value', 'i1', undefined, undefined, undefined, '1') }}}; break;
case 'i8': {{{ makeSetValue('ptr', '0', 'value', 'i8', undefined, undefined, undefined, '1') }}}; break;
case 'i16': {{{ makeSetValue('ptr', '0', 'value', 'i16', undefined, undefined, undefined, '1') }}}; break;
case 'i32': {{{ makeSetValue('ptr', '0', 'value', 'i32', undefined, undefined, undefined, '1') }}}; break;
case 'i64': {{{ makeSetValue('ptr', '0', 'value', 'i64', undefined, undefined, undefined, '1') }}}; break;
case 'float': {{{ makeSetValue('ptr', '0', 'value', 'float', undefined, undefined, undefined, '1') }}}; break;
case 'double': {{{ makeSetValue('ptr', '0', 'value', 'double', undefined, undefined, undefined, '1') }}}; break;
default: abort('invalid type for setValue: ' + type);
}
} else {
#endif
switch(type) {
case 'i1': {{{ makeSetValue('ptr', '0', 'value', 'i1') }}}; break;
case 'i8': {{{ makeSetValue('ptr', '0', 'value', 'i8') }}}; break;
case 'i16': {{{ makeSetValue('ptr', '0', 'value', 'i16') }}}; break;
case 'i32': {{{ makeSetValue('ptr', '0', 'value', 'i32') }}}; break;
case 'i64': {{{ makeSetValue('ptr', '0', 'value', 'i64') }}}; break;
case 'float': {{{ makeSetValue('ptr', '0', 'value', 'float') }}}; break;
case 'double': {{{ makeSetValue('ptr', '0', 'value', 'double') }}}; break;
default: abort('invalid type for setValue: ' + type);
}
#if SAFE_HEAP
}
#endif
}
/** @type {function(number, string, boolean=)} */
function getValue(ptr, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
#if SAFE_HEAP
if (noSafe) {
switch(type) {
case 'i1': return {{{ makeGetValue('ptr', '0', 'i1', undefined, undefined, undefined, undefined, '1') }}};
case 'i8': return {{{ makeGetValue('ptr', '0', 'i8', undefined, undefined, undefined, undefined, '1') }}};
case 'i16': return {{{ makeGetValue('ptr', '0', 'i16', undefined, undefined, undefined, undefined, '1') }}};
case 'i32': return {{{ makeGetValue('ptr', '0', 'i32', undefined, undefined, undefined, undefined, '1') }}};
case 'i64': return {{{ makeGetValue('ptr', '0', 'i64', undefined, undefined, undefined, undefined, '1') }}};
case 'float': return {{{ makeGetValue('ptr', '0', 'float', undefined, undefined, undefined, undefined, '1') }}};
case 'double': return {{{ makeGetValue('ptr', '0', 'double', undefined, undefined, undefined, undefined, '1') }}};
default: abort('invalid type for getValue: ' + type);
}
} else {
#endif
switch(type) {
case 'i1': return {{{ makeGetValue('ptr', '0', 'i1') }}};
case 'i8': return {{{ makeGetValue('ptr', '0', 'i8') }}};
case 'i16': return {{{ makeGetValue('ptr', '0', 'i16') }}};
case 'i32': return {{{ makeGetValue('ptr', '0', 'i32') }}};
case 'i64': return {{{ makeGetValue('ptr', '0', 'i64') }}};
case 'float': return {{{ makeGetValue('ptr', '0', 'float') }}};
case 'double': return {{{ makeGetValue('ptr', '0', 'double') }}};
default: abort('invalid type for getValue: ' + type);
}
#if SAFE_HEAP
}
#endif
return null;
}
var ALLOC_NORMAL = 0; // Tries to use _malloc()
var ALLOC_STACK = 1; // Lives for the duration of the current function call
var ALLOC_STATIC = 2; // Cannot be freed
var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk
var ALLOC_NONE = 4; // Do not allocate
// allocate(): This is for internal use. You can use it yourself as well, but the interface
// is a little tricky (see docs right below). The reason is that it is optimized
// for multiple syntaxes to save space in generated code. So you should
// normally not use allocate(), and instead allocate memory using _malloc(),
// initialize it with setValue(), and so forth.
// @slab: An array of data, or a number. If a number, then the size of the block to allocate,
// in *bytes* (note that this is sometimes confusing: the next parameter does not
// affect this!)
// @types: Either an array of types, one for each byte (or 0 if no type at that position),
// or a single type which is used for the entire block. This only matters if there
// is initial data - if @slab is a number, then this does not matter at all and is
// ignored.
// @allocator: How to allocate memory, see ALLOC_*
/** @type {function((TypedArray|Array<number>|number), string, number, number=)} */
function allocate(slab, types, allocator, ptr) {
var zeroinit, size;
if (typeof slab === 'number') {
zeroinit = true;
size = slab;
} else {
zeroinit = false;
size = slab.length;
}
var singleType = typeof types === 'string' ? types : null;
var ret;
if (allocator == ALLOC_NONE) {
ret = ptr;
} else {
ret = [typeof _malloc === 'function' ? _malloc : staticAlloc, stackAlloc, staticAlloc, dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length));
}
if (zeroinit) {
var stop;
ptr = ret;
assert((ret & 3) == 0);
stop = ret + (size & ~3);
for (; ptr < stop; ptr += 4) {
{{{ makeSetValue('ptr', '0', '0', 'i32', null, true) }}};
}
stop = ret + size;
while (ptr < stop) {
{{{ makeSetValue('ptr++', '0', '0', 'i8', null, true) }}};
}
return ret;
}
if (singleType === 'i8') {
if (slab.subarray || slab.slice) {
HEAPU8.set(/** @type {!Uint8Array} */ (slab), ret);
} else {
HEAPU8.set(new Uint8Array(slab), ret);
}
return ret;
}
var i = 0, type, typeSize, previousType;
while (i < size) {
var curr = slab[i];
type = singleType || types[i];
if (type === 0) {
i++;
continue;
}
#if ASSERTIONS
assert(type, 'Must know what type to store in allocate!');
#endif
if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later
setValue(ret+i, curr, type);
// no need to look up size unless type changes, so cache it
if (previousType !== type) {
typeSize = getNativeTypeSize(type);
previousType = type;
}
i += typeSize;
}
return ret;
}
// Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready
function getMemory(size) {
if (!staticSealed) return staticAlloc(size);
if (!runtimeInitialized) return dynamicAlloc(size);
return _malloc(size);
}
/** @type {function(number, number=)} */
function Pointer_stringify(ptr, length) {
if (length === 0 || !ptr) return '';
// Find the length, and check for UTF while doing so
var hasUtf = 0;
var t;
var i = 0;
while (1) {
#if ASSERTIONS
assert(ptr + i < TOTAL_MEMORY);
#endif
t = {{{ makeGetValue('ptr', 'i', 'i8', 0, 1) }}};
hasUtf |= t;
if (t == 0 && !length) break;
i++;
if (length && i == length) break;
}
if (!length) length = i;
var ret = '';
if (hasUtf < 128) {
var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack
var curr;
while (length > 0) {
curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)));
ret = ret ? ret + curr : curr;
ptr += MAX_CHUNK;
length -= MAX_CHUNK;
}
return ret;
}
return UTF8ToString(ptr);
}
// Given a pointer 'ptr' to a null-terminated ASCII-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function AsciiToString(ptr) {
var str = '';
while (1) {
var ch = {{{ makeGetValue('ptr++', 0, 'i8') }}};
if (!ch) return str;
str += String.fromCharCode(ch);
}
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in ASCII form. The copy will require at most str.length+1 bytes of space in the HEAP.
function stringToAscii(str, outPtr) {
return writeAsciiToMemory(str, outPtr, false);
}
// Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns
// a copy of that string as a Javascript String object.
#if TEXTDECODER
var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined;
#endif
function UTF8ArrayToString(u8Array, idx) {
#if TEXTDECODER
var endPtr = idx;
// TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself.
// Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage.
while (u8Array[endPtr]) ++endPtr;
if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) {
return UTF8Decoder.decode(u8Array.subarray(idx, endPtr));
} else {
#endif
var u0, u1, u2, u3, u4, u5;
var str = '';
while (1) {
// For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629
u0 = u8Array[idx++];
if (!u0) return str;
if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; }
u1 = u8Array[idx++] & 63;
if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; }
u2 = u8Array[idx++] & 63;
if ((u0 & 0xF0) == 0xE0) {
u0 = ((u0 & 15) << 12) | (u1 << 6) | u2;
} else {
u3 = u8Array[idx++] & 63;
if ((u0 & 0xF8) == 0xF0) {
u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3;
} else {
u4 = u8Array[idx++] & 63;
if ((u0 & 0xFC) == 0xF8) {
u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4;
} else {
u5 = u8Array[idx++] & 63;
u0 = ((u0 & 1) << 30) | (u1 << 24) | (u2 << 18) | (u3 << 12) | (u4 << 6) | u5;
}
}
}
if (u0 < 0x10000) {
str += String.fromCharCode(u0);
} else {
var ch = u0 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
}
}
#if TEXTDECODER
}
#endif
}
// Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function UTF8ToString(ptr) {
return UTF8ArrayToString({{{ heapAndOffset('HEAPU8', 'ptr') }}});
}
// Copies the given Javascript String object 'str' to the given byte array at address 'outIdx',
// encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP.
// Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outU8Array: the array to copy to. Each index in this array is assumed to be one 8-byte element.
// outIdx: The starting offset in the array to begin the copying.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else.
// maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) {
if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes.
return 0;
var startIdx = outIdx;
var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator.
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8.
// See http://unicode.org/faq/utf_bom.html#utf16-3
// For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629
var u = str.charCodeAt(i); // possibly a lead surrogate
if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF);
if (u <= 0x7F) {
if (outIdx >= endIdx) break;
outU8Array[outIdx++] = u;
} else if (u <= 0x7FF) {
if (outIdx + 1 >= endIdx) break;
outU8Array[outIdx++] = 0xC0 | (u >> 6);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0xFFFF) {
if (outIdx + 2 >= endIdx) break;
outU8Array[outIdx++] = 0xE0 | (u >> 12);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0x1FFFFF) {
if (outIdx + 3 >= endIdx) break;
outU8Array[outIdx++] = 0xF0 | (u >> 18);
outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0x3FFFFFF) {
if (outIdx + 4 >= endIdx) break;
outU8Array[outIdx++] = 0xF8 | (u >> 24);
outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else {
if (outIdx + 5 >= endIdx) break;
outU8Array[outIdx++] = 0xFC | (u >> 30);
outU8Array[outIdx++] = 0x80 | ((u >> 24) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
}
}
// Null-terminate the pointer to the buffer.
outU8Array[outIdx] = 0;
return outIdx - startIdx;
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP.
// Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF8(str, outPtr, maxBytesToWrite) {
#if ASSERTIONS
assert(typeof maxBytesToWrite == 'number', 'stringToUTF8(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!');
#endif
return stringToUTF8Array(str, {{{ heapAndOffset('HEAPU8', 'outPtr') }}}, maxBytesToWrite);
}
// Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF8(str) {
var len = 0;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var u = str.charCodeAt(i); // possibly a lead surrogate
if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF);
if (u <= 0x7F) {
++len;
} else if (u <= 0x7FF) {
len += 2;
} else if (u <= 0xFFFF) {
len += 3;
} else if (u <= 0x1FFFFF) {
len += 4;
} else if (u <= 0x3FFFFFF) {
len += 5;
} else {
len += 6;
}
}
return len;
}
// Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined;
function UTF16ToString(ptr) {
#if ASSERTIONS
assert(ptr % 2 == 0, 'Pointer passed to UTF16ToString must be aligned to two bytes!');
#endif
#if TEXTDECODER
var endPtr = ptr;
// TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself.
// Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage.
var idx = endPtr >> 1;
while (HEAP16[idx]) ++idx;
endPtr = idx << 1;
if (endPtr - ptr > 32 && UTF16Decoder) {
return UTF16Decoder.decode(HEAPU8.subarray(ptr, endPtr));
} else {
#endif
var i = 0;
var str = '';
while (1) {
var codeUnit = {{{ makeGetValue('ptr', 'i*2', 'i16') }}};
if (codeUnit == 0) return str;
++i;
// fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through.
str += String.fromCharCode(codeUnit);
}
#if TEXTDECODER
}
#endif
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF16 form. The copy will require at most str.length*4+2 bytes of space in the HEAP.
// Use the function lengthBytesUTF16() to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outPtr: Byte address in Emscripten HEAP where to write the string to.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=2, only the null terminator will be written and nothing else.
// maxBytesToWrite<2 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF16(str, outPtr, maxBytesToWrite) {
#if ASSERTIONS
assert(outPtr % 2 == 0, 'Pointer passed to stringToUTF16 must be aligned to two bytes!');
#endif
#if ASSERTIONS
assert(typeof maxBytesToWrite == 'number', 'stringToUTF16(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!');
#endif
// Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed.
if (maxBytesToWrite === undefined) {
maxBytesToWrite = 0x7FFFFFFF;
}
if (maxBytesToWrite < 2) return 0;
maxBytesToWrite -= 2; // Null terminator.
var startPtr = outPtr;
var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length;
for (var i = 0; i < numCharsToWrite; ++i) {
// charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP.
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
{{{ makeSetValue('outPtr', 0, 'codeUnit', 'i16') }}};
outPtr += 2;
}
// Null-terminate the pointer to the HEAP.
{{{ makeSetValue('outPtr', 0, 0, 'i16') }}};
return outPtr - startPtr;
}
// Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF16(str) {
return str.length*2;
}
function UTF32ToString(ptr) {
#if ASSERTIONS
assert(ptr % 4 == 0, 'Pointer passed to UTF32ToString must be aligned to four bytes!');
#endif
var i = 0;
var str = '';
while (1) {
var utf32 = {{{ makeGetValue('ptr', 'i*4', 'i32') }}};
if (utf32 == 0)
return str;
++i;
// Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing.
// See http://unicode.org/faq/utf_bom.html#utf16-3
if (utf32 >= 0x10000) {
var ch = utf32 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
} else {
str += String.fromCharCode(utf32);
}
}
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF32 form. The copy will require at most str.length*4+4 bytes of space in the HEAP.
// Use the function lengthBytesUTF32() to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outPtr: Byte address in Emscripten HEAP where to write the string to.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=4, only the null terminator will be written and nothing else.
// maxBytesToWrite<4 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF32(str, outPtr, maxBytesToWrite) {
#if ASSERTIONS
assert(outPtr % 4 == 0, 'Pointer passed to stringToUTF32 must be aligned to four bytes!');
#endif
#if ASSERTIONS
assert(typeof maxBytesToWrite == 'number', 'stringToUTF32(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!');
#endif
// Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed.
if (maxBytesToWrite === undefined) {
maxBytesToWrite = 0x7FFFFFFF;
}
if (maxBytesToWrite < 4) return 0;
var startPtr = outPtr;
var endPtr = startPtr + maxBytesToWrite - 4;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) {
var trailSurrogate = str.charCodeAt(++i);
codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF);
}
{{{ makeSetValue('outPtr', 0, 'codeUnit', 'i32') }}};
outPtr += 4;
if (outPtr + 4 > endPtr) break;
}
// Null-terminate the pointer to the HEAP.
{{{ makeSetValue('outPtr', 0, 0, 'i32') }}};
return outPtr - startPtr;
}
// Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF32(str) {
var len = 0;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var codeUnit = str.charCodeAt(i);
if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) ++i; // possibly a lead surrogate, so skip over the tail surrogate.
len += 4;
}
return len;
}
// Allocate heap space for a JS string, and write it there.
// It is the responsibility of the caller to free() that memory.
function allocateUTF8(str) {
var size = lengthBytesUTF8(str) + 1;
var ret = _malloc(size);
if (ret) stringToUTF8Array(str, HEAP8, ret, size);
return ret;
}
// Allocate stack space for a JS string, and write it there.
function allocateUTF8OnStack(str) {
var size = lengthBytesUTF8(str) + 1;
var ret = stackAlloc(size);
stringToUTF8Array(str, HEAP8, ret, size);
return ret;
}
function demangle(func) {
#if DEMANGLE_SUPPORT
var __cxa_demangle_func = Module['___cxa_demangle'] || Module['__cxa_demangle'];
assert(__cxa_demangle_func);
try {
var s =
#if WASM_BACKEND
func;
#else
func.substr(1);
#endif
var len = lengthBytesUTF8(s)+1;
var buf = _malloc(len);
stringToUTF8(s, buf, len);
var status = _malloc(4);
var ret = __cxa_demangle_func(buf, 0, 0, status);
if ({{{ makeGetValue('status', '0', 'i32') }}} === 0 && ret) {
return Pointer_stringify(ret);
}
// otherwise, libcxxabi failed
} catch(e) {
// ignore problems here
} finally {
if (buf) _free(buf);
if (status) _free(status);
if (ret) _free(ret);
}
// failure when using libcxxabi, don't demangle
return func;
#else // DEMANGLE_SUPPORT
#if ASSERTIONS
warnOnce('warning: build with -s DEMANGLE_SUPPORT=1 to link in libcxxabi demangling');
#endif // ASSERTIONS
return func;
#endif // DEMANGLE_SUPPORT
}
function demangleAll(text) {
var regex =
#if WASM_BACKEND
/_Z[\w\d_]+/g;
#else
/__Z[\w\d_]+/g;
#endif
return text.replace(regex,
function(x) {
var y = demangle(x);
return x === y ? x : (x + ' [' + y + ']');
});
}
function jsStackTrace() {
var err = new Error();
if (!err.stack) {
// IE10+ special cases: It does have callstack info, but it is only populated if an Error object is thrown,
// so try that as a special-case.
try {
throw new Error(0);
} catch(e) {
err = e;
}
if (!err.stack) {
return '(no stack trace available)';
}
}
return err.stack.toString();
}
function stackTrace() {
var js = jsStackTrace();
if (Module['extraStackTrace']) js += '\n' + Module['extraStackTrace']();
return demangleAll(js);
}
// Memory management
var PAGE_SIZE = 16384;
var WASM_PAGE_SIZE = 65536;
var ASMJS_PAGE_SIZE = 16777216;
var MIN_TOTAL_MEMORY = 16777216;
function alignUp(x, multiple) {
if (x % multiple > 0) {
x += multiple - (x % multiple);
}
return x;
}
var HEAP,
/** @type {ArrayBuffer} */
buffer,
/** @type {Int8Array} */
HEAP8,
/** @type {Uint8Array} */
HEAPU8,
/** @type {Int16Array} */
HEAP16,
/** @type {Uint16Array} */
HEAPU16,
/** @type {Int32Array} */
HEAP32,
/** @type {Uint32Array} */
HEAPU32,
/** @type {Float32Array} */
HEAPF32,
/** @type {Float64Array} */
HEAPF64;
function updateGlobalBuffer(buf) {
Module['buffer'] = buffer = buf;
}
function updateGlobalBufferViews() {
Module['HEAP8'] = HEAP8 = new Int8Array(buffer);
Module['HEAP16'] = HEAP16 = new Int16Array(buffer);
Module['HEAP32'] = HEAP32 = new Int32Array(buffer);
Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer);
Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer);
Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer);
Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer);
Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer);
}
var STATIC_BASE, STATICTOP, staticSealed; // static area
var STACK_BASE, STACKTOP, STACK_MAX; // stack area
var DYNAMIC_BASE, DYNAMICTOP_PTR; // dynamic area handled by sbrk
#if USE_PTHREADS
if (!ENVIRONMENT_IS_PTHREAD) { // Pthreads have already initialized these variables in src/pthread-main.js, where they were passed to the thread worker at startup time
#endif
STATIC_BASE = STATICTOP = STACK_BASE = STACKTOP = STACK_MAX = DYNAMIC_BASE = DYNAMICTOP_PTR = 0;
staticSealed = false;
#if USE_PTHREADS
}
#endif
#if USE_PTHREADS
if (ENVIRONMENT_IS_PTHREAD) {
staticSealed = true; // The static memory area has been initialized already in the main thread, pthreads skip this.
#if SEPARATE_ASM != 0
importScripts('{{{ SEPARATE_ASM }}}'); // load the separated-out asm.js
#endif
}
#endif
#if STACK_OVERFLOW_CHECK
// Initializes the stack cookie. Called at the startup of main and at the startup of each thread in pthreads mode.
function writeStackCookie() {
assert((STACK_MAX & 3) == 0);
HEAPU32[(STACK_MAX >> 2)-1] = 0x02135467;
HEAPU32[(STACK_MAX >> 2)-2] = 0x89BACDFE;
}
function checkStackCookie() {
if (HEAPU32[(STACK_MAX >> 2)-1] != 0x02135467 || HEAPU32[(STACK_MAX >> 2)-2] != 0x89BACDFE) {
abort('Stack overflow! Stack cookie has been overwritten, expected hex dwords 0x89BACDFE and 0x02135467, but received 0x' + HEAPU32[(STACK_MAX >> 2)-2].toString(16) + ' ' + HEAPU32[(STACK_MAX >> 2)-1].toString(16));
}
#if !SAFE_SPLIT_MEMORY
// Also test the global address 0 for integrity. This check is not compatible with SAFE_SPLIT_MEMORY though, since that mode already tests all address 0 accesses on its own.
if (HEAP32[0] !== 0x63736d65 /* 'emsc' */) throw 'Runtime error: The application has corrupted its heap memory area (address zero)!';
#endif
}
function abortStackOverflow(allocSize) {
abort('Stack overflow! Attempted to allocate ' + allocSize + ' bytes on the stack, but stack has only ' + (STACK_MAX - stackSave() + allocSize) + ' bytes available!');
}
#endif
#if ABORTING_MALLOC
function abortOnCannotGrowMemory() {
#if WASM
abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime, or (3) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 ');
#else
abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime but prevents some optimizations, (3) set Module.TOTAL_MEMORY to a higher value before the program runs, or (4) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 ');
#endif
}
#endif
#if ALLOW_MEMORY_GROWTH
if (!Module['reallocBuffer']) Module['reallocBuffer'] = function(size) {
var ret;
try {
if (ArrayBuffer.transfer) {
ret = ArrayBuffer.transfer(buffer, size);
} else {
var oldHEAP8 = HEAP8;
ret = new ArrayBuffer(size);
var temp = new Int8Array(ret);
temp.set(oldHEAP8);
}
} catch(e) {
return false;
}
var success = _emscripten_replace_memory(ret);
if (!success) return false;
return ret;
};
#endif
function enlargeMemory() {
#if USE_PTHREADS
abort('Cannot enlarge memory arrays, since compiling with pthreads support enabled (-s USE_PTHREADS=1).');
#else
#if ALLOW_MEMORY_GROWTH == 0
#if ABORTING_MALLOC
abortOnCannotGrowMemory();
#else
return false; // malloc will report failure
#endif
#else
// TOTAL_MEMORY is the current size of the actual array, and DYNAMICTOP is the new top.
#if ASSERTIONS
assert(HEAP32[DYNAMICTOP_PTR>>2] > TOTAL_MEMORY); // This function should only ever be called after the ceiling of the dynamic heap has already been bumped to exceed the current total size of the asm.js heap.
#endif
#if EMSCRIPTEN_TRACING
// Report old layout one last time
_emscripten_trace_report_memory_layout();
#endif
var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB.
var LIMIT = 2147483648 - PAGE_MULTIPLE; // We can do one page short of 2GB as theoretical maximum.
if (HEAP32[DYNAMICTOP_PTR>>2] > LIMIT) {
#if ASSERTIONS
Module.printErr('Cannot enlarge memory, asked to go up to ' + HEAP32[DYNAMICTOP_PTR>>2] + ' bytes, but the limit is ' + LIMIT + ' bytes!');
#endif
return false;
}
var OLD_TOTAL_MEMORY = TOTAL_MEMORY;
TOTAL_MEMORY = Math.max(TOTAL_MEMORY, MIN_TOTAL_MEMORY); // So the loop below will not be infinite, and minimum asm.js memory size is 16MB.
while (TOTAL_MEMORY < HEAP32[DYNAMICTOP_PTR>>2]) { // Keep incrementing the heap size as long as it's less than what is requested.
if (TOTAL_MEMORY <= 536870912) {
TOTAL_MEMORY = alignUp(2 * TOTAL_MEMORY, PAGE_MULTIPLE); // Simple heuristic: double until 1GB...
} else {
// ..., but after that, add smaller increments towards 2GB, which we cannot reach
TOTAL_MEMORY = Math.min(alignUp((3 * TOTAL_MEMORY + 2147483648) / 4, PAGE_MULTIPLE), LIMIT);
#if ASSERTIONS
if (TOTAL_MEMORY === OLD_TOTAL_MEMORY) {
warnOnce('Cannot ask for more memory since we reached the practical limit in browsers (which is just below 2GB), so the request would have failed. Requesting only ' + TOTAL_MEMORY);
}
#endif
}
}
#if ASSERTIONS
var start = Date.now();
#endif
var replacement = Module['reallocBuffer'](TOTAL_MEMORY);
if (!replacement || replacement.byteLength != TOTAL_MEMORY) {
#if ASSERTIONS
Module.printErr('Failed to grow the heap from ' + OLD_TOTAL_MEMORY + ' bytes to ' + TOTAL_MEMORY + ' bytes, not enough memory!');
if (replacement) {
Module.printErr('Expected to get back a buffer of size ' + TOTAL_MEMORY + ' bytes, but instead got back a buffer of size ' + replacement.byteLength);
}
#endif
// restore the state to before this call, we failed
TOTAL_MEMORY = OLD_TOTAL_MEMORY;
return false;
}
// everything worked
updateGlobalBuffer(replacement);
updateGlobalBufferViews();
#if ASSERTIONS
if (!Module["usingWasm"]) {
Module.printErr('Warning: Enlarging memory arrays, this is not fast! ' + [OLD_TOTAL_MEMORY, TOTAL_MEMORY]);
}
#endif
#if EMSCRIPTEN_TRACING
_emscripten_trace_js_log_message("Emscripten", "Enlarging memory arrays from " + OLD_TOTAL_MEMORY + " to " + TOTAL_MEMORY);
// And now report the new layout
_emscripten_trace_report_memory_layout();
#endif
return true;
#endif // ALLOW_MEMORY_GROWTH
#endif // USE_PTHREADS
}
#if ALLOW_MEMORY_GROWTH
var byteLength;
try {
byteLength = Function.prototype.call.bind(Object.getOwnPropertyDescriptor(ArrayBuffer.prototype, 'byteLength').get);
byteLength(new ArrayBuffer(4)); // can fail on older ie
} catch(e) { // can fail on older node/v8
byteLength = function(buffer) { return buffer.byteLength; };
}
#endif
var TOTAL_STACK = Module['TOTAL_STACK'] || {{{ TOTAL_STACK }}};
var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || {{{ TOTAL_MEMORY }}};
if (TOTAL_MEMORY < TOTAL_STACK) Module.printErr('TOTAL_MEMORY should be larger than TOTAL_STACK, was ' + TOTAL_MEMORY + '! (TOTAL_STACK=' + TOTAL_STACK + ')');
// Initialize the runtime's memory
#if ASSERTIONS
// check for full engine support (use string 'subarray' to avoid closure compiler confusion)
assert(typeof Int32Array !== 'undefined' && typeof Float64Array !== 'undefined' && Int32Array.prototype.subarray !== undefined && Int32Array.prototype.set !== undefined,
'JS engine does not provide full typed array support');
#endif
#if IN_TEST_HARNESS
// Test runs in browsers should always be free from uncaught exceptions. If an uncaught exception is thrown, we fail browser test execution in the REPORT_RESULT() macro to output an error value.
if (ENVIRONMENT_IS_WEB) {
window.addEventListener('error', function(e) {
if (e.message.indexOf('SimulateInfiniteLoop') != -1) return;
console.error('Page threw an exception ' + e);
Module['pageThrewException'] = true;
});
}
#if USE_PTHREADS == 1
if (typeof SharedArrayBuffer === 'undefined' || typeof Atomics === 'undefined') {
xhr = new XMLHttpRequest();
xhr.open('GET', 'http://localhost:8888/report_result?skipped:%20SharedArrayBuffer%20is%20not%20supported!');
xhr.send();
setTimeout(function() { window.close() }, 2000);
}
#endif
#endif
#if USE_PTHREADS
#if !WASM
if (typeof SharedArrayBuffer !== 'undefined') {
if (!ENVIRONMENT_IS_PTHREAD) buffer = new SharedArrayBuffer(TOTAL_MEMORY);
// Currently SharedArrayBuffer does not have a slice() operation, so polyfill it in.
// Adapted from https://github.com/ttaubert/node-arraybuffer-slice, (c) 2014 Tim Taubert <tim@timtaubert.de>
// arraybuffer-slice may be freely distributed under the MIT license.
(function (undefined) {
"use strict";
function clamp(val, length) {
val = (val|0) || 0;
if (val < 0) return Math.max(val + length, 0);
return Math.min(val, length);
}
if (typeof SharedArrayBuffer !== 'undefined' && !SharedArrayBuffer.prototype.slice) {
SharedArrayBuffer.prototype.slice = function (from, to) {
var length = this.byteLength;
var begin = clamp(from, length);
var end = length;
if (to !== undefined) end = clamp(to, length);
if (begin > end) return new ArrayBuffer(0);
var num = end - begin;
var target = new ArrayBuffer(num);
var targetArray = new Uint8Array(target);
var sourceArray = new Uint8Array(this, begin, num);
targetArray.set(sourceArray);
return target;
};
}
})();
} else {
if (!ENVIRONMENT_IS_PTHREAD) buffer = new ArrayBuffer(TOTAL_MEMORY);
}
updateGlobalBufferViews();
if (typeof Atomics === 'undefined') {
// Polyfill singlethreaded atomics ops from http://lars-t-hansen.github.io/ecmascript_sharedmem/shmem.html#Atomics.add
// No thread-safety needed since we don't have multithreading support.
Atomics = {};
Atomics['add'] = function(t, i, v) { var w = t[i]; t[i] += v; return w; }
Atomics['and'] = function(t, i, v) { var w = t[i]; t[i] &= v; return w; }
Atomics['compareExchange'] = function(t, i, e, r) { var w = t[i]; if (w == e) t[i] = r; return w; }
Atomics['exchange'] = function(t, i, v) { var w = t[i]; t[i] = v; return w; }
Atomics['wait'] = function(t, i, v, o) { if (t[i] != v) return 'not-equal'; else return 'timed-out'; }
Atomics['wake'] = function(t, i, c) { return 0; }
Atomics['wakeOrRequeue'] = function(t, i1, c, i2, v) { return 0; }
Atomics['isLockFree'] = function(s) { return true; }
Atomics['load'] = function(t, i) { return t[i]; }
Atomics['or'] = function(t, i, v) { var w = t[i]; t[i] |= v; return w; }
Atomics['store'] = function(t, i, v) { t[i] = v; return v; }
Atomics['sub'] = function(t, i, v) { var w = t[i]; t[i] -= v; return w; }
Atomics['xor'] = function(t, i, v) { var w = t[i]; t[i] ^= v; return w; }
}
#else
if (!ENVIRONMENT_IS_PTHREAD) {
#if ALLOW_MEMORY_GROWTH
Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE , 'maximum': {{{ WASM_MEM_MAX }}} / WASM_PAGE_SIZE, 'shared': true });
#else
Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE , 'maximum': TOTAL_MEMORY / WASM_PAGE_SIZE, 'shared': true });
#endif
buffer = Module['wasmMemory'].buffer;
}
updateGlobalBufferViews();
#endif // !WASM
#else // USE_PTHREADS
#if SPLIT_MEMORY == 0
// Use a provided buffer, if there is one, or else allocate a new one
if (Module['buffer']) {
buffer = Module['buffer'];
#if ASSERTIONS
assert(buffer.byteLength === TOTAL_MEMORY, 'provided buffer should be ' + TOTAL_MEMORY + ' bytes, but it is ' + buffer.byteLength);
#endif
} else {
// Use a WebAssembly memory where available
#if WASM
if (typeof WebAssembly === 'object' && typeof WebAssembly.Memory === 'function') {
#if ASSERTIONS
assert(TOTAL_MEMORY % WASM_PAGE_SIZE === 0);
#endif // ASSERTIONS
#if ALLOW_MEMORY_GROWTH
#if WASM_MEM_MAX
#if ASSERTIONS
assert({{{ WASM_MEM_MAX }}} % WASM_PAGE_SIZE == 0);
#endif
Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE, 'maximum': {{{ WASM_MEM_MAX }}} / WASM_PAGE_SIZE });
#else
Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE });
#endif // BINARYEN_MEM_MAX
#else
Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE, 'maximum': TOTAL_MEMORY / WASM_PAGE_SIZE });
#endif // ALLOW_MEMORY_GROWTH
buffer = Module['wasmMemory'].buffer;
} else
#endif // WASM
{
buffer = new ArrayBuffer(TOTAL_MEMORY);
}
#if ASSERTIONS
assert(buffer.byteLength === TOTAL_MEMORY);
#endif // ASSERTIONS
Module['buffer'] = buffer;
}
updateGlobalBufferViews();
#else // SPLIT_MEMORY
// make sure total memory is a multiple of the split memory size
var SPLIT_MEMORY = {{{ SPLIT_MEMORY }}};
var SPLIT_MEMORY_MASK = SPLIT_MEMORY - 1;
var SPLIT_MEMORY_BITS = -1;
var ALLOW_MEMORY_GROWTH = {{{ ALLOW_MEMORY_GROWTH }}};
var ABORTING_MALLOC = {{{ ABORTING_MALLOC }}};
Module['SPLIT_MEMORY'] = SPLIT_MEMORY;
totalMemory = TOTAL_MEMORY;
if (totalMemory % SPLIT_MEMORY) {
totalMemory += SPLIT_MEMORY - (totalMemory % SPLIT_MEMORY);
}
if (totalMemory === SPLIT_MEMORY) totalMemory *= 2;
if (totalMemory !== TOTAL_MEMORY) {
TOTAL_MEMORY = totalMemory;
#if ASSERTIONS == 2
Module.printErr('increasing TOTAL_MEMORY to ' + TOTAL_MEMORY + ' to be a multiple>1 of the split memory size ' + SPLIT_MEMORY + ')');
#endif
}
var buffers = [], HEAP8s = [], HEAP16s = [], HEAP32s = [], HEAPU8s = [], HEAPU16s = [], HEAPU32s = [], HEAPF32s = [], HEAPF64s = [];
// Allocates a split chunk, a range of memory of size SPLIT_MEMORY. Generally data is not provided, and a new
// buffer is allocated, this is what happens when malloc works. However, you can provide your own buffer,
// which then lets you access it at address [ i*SPLIT_MEMORY, (i+1)*SPLIT_MEMORY ).
// The function returns true if it succeeds. It can also throw an exception if no data is provided and
// the browser fails to allocate the buffer.
function allocateSplitChunk(i, data) {
if (buffers[i]) return false; // already taken
// any of these allocations might fail; do them all before writing anything to global state
var currBuffer = data ? data : new ArrayBuffer(SPLIT_MEMORY);
#if ASSERTIONS
assert(currBuffer instanceof ArrayBuffer);
#endif
var currHEAP8s = new Int8Array(currBuffer);
var currHEAP16s = new Int16Array(currBuffer);
var currHEAP32s = new Int32Array(currBuffer);
var currHEAPU8s = new Uint8Array(currBuffer);
var currHEAPU16s = new Uint16Array(currBuffer);
var currHEAPU32s = new Uint32Array(currBuffer);
var currHEAPF32s = new Float32Array(currBuffer);
var currHEAPF64s = new Float64Array(currBuffer);
buffers[i] = currBuffer;
HEAP8s[i] = currHEAP8s;
HEAP16s[i] = currHEAP16s;
HEAP32s[i] = currHEAP32s;
HEAPU8s[i] = currHEAPU8s;
HEAPU16s[i] = currHEAPU16s;
HEAPU32s[i] = currHEAPU32s;
HEAPF32s[i] = currHEAPF32s;
HEAPF64s[i] = currHEAPF64s;
return true;
}
function freeSplitChunk(i) {
#if ASSERTIONS
assert(buffers[i] && HEAP8s[i]);
assert(i > 0); // cannot free the first chunk
#endif
buffers[i] = HEAP8s[i] = HEAP16s[i] = HEAP32s[i] = HEAPU8s[i] = HEAPU16s[i] = HEAPU32s[i] = HEAPF32s[i] = HEAPF64s[i] = null;
}
(function() {
for (var i = 0; i < TOTAL_MEMORY / SPLIT_MEMORY; i++) {
buffers[i] = HEAP8s[i] = HEAP16s[i] = HEAP32s[i] = HEAPU8s[i] = HEAPU16s[i] = HEAPU32s[i] = HEAPF32s[i] = HEAPF64s[i] = null;
}
var temp = SPLIT_MEMORY;
while (temp) {
temp >>= 1;
SPLIT_MEMORY_BITS++;
}
allocateSplitChunk(0); // first chunk is for core runtime, static, stack, etc., always must be initialized
// support HEAP8.subarray etc.
var SHIFT_TABLE = [0, 0, 1, 0, 2, 0, 0, 0, 3];
function fake(real) {
var bytes = real[0].BYTES_PER_ELEMENT;
var shifts = SHIFT_TABLE[bytes];
#if ASSERTIONS
assert(shifts > 0 || bytes == 1);
#endif
var that = {
BYTES_PER_ELEMENT: bytes,
set: function(array, offset) {
if (offset === undefined) offset = 0;
// potentially split over multiple chunks
while (array.length > 0) {
var chunk = offset >> SPLIT_MEMORY_BITS;
var relative = offset & SPLIT_MEMORY_MASK;
if (relative + (array.length << shifts) < SPLIT_MEMORY) {
real[chunk].set(array, relative); // all fits in this chunk
break;
} else {
var currSize = SPLIT_MEMORY - relative;
#if ASSERTIONS
assert(currSize % that.BYTES_PER_ELEMENT === 0);
#endif
var lastIndex = currSize >> shifts;
real[chunk].set(array.subarray(0, lastIndex), relative);
// increments
array = array.subarray(lastIndex);
offset += currSize;
}
}
},
subarray: function(from, to) {
from = from << shifts;
var start = from >> SPLIT_MEMORY_BITS;
if (to === undefined) {
to = (start + 1) << SPLIT_MEMORY_BITS;
} else {
to = to << shifts;
}
to = Math.max(from, to); // if to is smaller, we'll get nothing anyway, same as to == from
if (from < to) {
var end = (to - 1) >> SPLIT_MEMORY_BITS; // -1, since we do not actually read the last address
#if ASSERTIONS
assert(start === end, 'subarray cannot span split chunks');
#endif
}
if (to > from && (to & SPLIT_MEMORY_MASK) == 0) {
// avoid the mask on the next line giving 0 for the end
return real[start].subarray((from & SPLIT_MEMORY_MASK) >> shifts); // just return to the end of the chunk
}
return real[start].subarray((from & SPLIT_MEMORY_MASK) >> shifts, (to & SPLIT_MEMORY_MASK) >> shifts);
},
buffer: {
slice: function(from, to) {
#if ASSERTIONS
assert(to, 'TODO: this is an actual copy, so we could support a slice across multiple chunks');
#endif
return new Uint8Array(HEAPU8.subarray(from, to)).buffer;
},
},
};
return that;
}
HEAP8 = fake(HEAP8s);
HEAP16 = fake(HEAP16s);
HEAP32 = fake(HEAP32s);
HEAPU8 = fake(HEAPU8s);
HEAPU16 = fake(HEAPU16s);
HEAPU32 = fake(HEAPU32s);
HEAPF32 = fake(HEAPF32s);
HEAPF64 = fake(HEAPF64s);
})();
#if SAFE_SPLIT_MEMORY
function checkPtr(ptr, shifts) {
if (ptr <= 0) abort('segmentation fault storing to address ' + ptr);
if (ptr !== ((ptr >> shifts) << shifts)) abort('alignment error storing to address ' + ptr + ', which was expected to be aligned to a shift of ' + shifts);
if ((ptr >> SPLIT_MEMORY_BITS) !== (ptr + Math.pow(2, shifts) - 1 >> SPLIT_MEMORY_BITS)) abort('segmentation fault, write spans split chunks ' + [ptr, shifts]);
}
#endif
function get8(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 0);
#endif
return HEAP8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] | 0;
}
function get16(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 1);
#endif
return HEAP16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] | 0;
}
function get32(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 2);
#endif
return HEAP32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] | 0;
}
function getU8(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 0);
#endif
return HEAPU8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] | 0;
}
function getU16(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 1);
#endif
return HEAPU16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] | 0;
}
function getU32(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 2);
#endif
return HEAPU32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] >>> 0;
}
function getF32(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 2);
#endif
return +HEAPF32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2];
}
function getF64(ptr) {
ptr = ptr | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 3);
#endif
return +HEAPF64s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 3];
}
function set8(ptr, value) {
ptr = ptr | 0;
value = value | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 0);
#endif
HEAP8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] = value;
}
function set16(ptr, value) {
ptr = ptr | 0;
value = value | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 1);
#endif
HEAP16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] = value;
}
function set32(ptr, value) {
ptr = ptr | 0;
value = value | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 2);
#endif
HEAP32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] = value;
}
function setU8(ptr, value) {
ptr = ptr | 0;
value = value | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 0);
#endif
HEAPU8s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 0] = value;
}
function setU16(ptr, value) {
ptr = ptr | 0;
value = value | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 1);
#endif
HEAPU16s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 1] = value;
}
function setU32(ptr, value) {
ptr = ptr | 0;
value = value | 0;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 2);
#endif
HEAPU32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] = value;
}
function setF32(ptr, value) {
ptr = ptr | 0;
value = +value;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 2);
#endif
HEAPF32s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 2] = value;
}
function setF64(ptr, value) {
ptr = ptr | 0;
value = +value;
#if SAFE_SPLIT_MEMORY
checkPtr(ptr, 3);
#endif
HEAPF64s[ptr >> SPLIT_MEMORY_BITS][(ptr & SPLIT_MEMORY_MASK) >> 3] = value;
}
#endif // SPLIT_MEMORY
#endif // USE_PTHREADS
function getTotalMemory() {
return TOTAL_MEMORY;
}
// Endianness check (note: assumes compiler arch was little-endian)
#if SAFE_SPLIT_MEMORY == 0
#if USE_PTHREADS
if (!ENVIRONMENT_IS_PTHREAD) {
#endif
HEAP32[0] = 0x63736d65; /* 'emsc' */
#if USE_PTHREADS
} else {
if (HEAP32[0] !== 0x63736d65) throw 'Runtime error: The application has corrupted its heap memory area (address zero)!';
}
#endif
HEAP16[1] = 0x6373;
if (HEAPU8[2] !== 0x73 || HEAPU8[3] !== 0x63) throw 'Runtime error: expected the system to be little-endian!';
#endif
function callRuntimeCallbacks(callbacks) {
while(callbacks.length > 0) {
var callback = callbacks.shift();
if (typeof callback == 'function') {
callback();
continue;
}
var func = callback.func;
if (typeof func === 'number') {
if (callback.arg === undefined) {
Module['dynCall_v'](func);
} else {
Module['dynCall_vi'](func, callback.arg);
}
} else {
func(callback.arg === undefined ? null : callback.arg);
}
}
}
var __ATPRERUN__ = []; // functions called before the runtime is initialized
var __ATINIT__ = []; // functions called during startup
var __ATMAIN__ = []; // functions called when main() is to be run
var __ATEXIT__ = []; // functions called during shutdown
2018-07-11 00:33:36 +00:00
var __ATPOSTRUN__ = []; // functions called after the main() is called
var runtimeInitialized = false;
var runtimeExited = false;
#if USE_PTHREADS
if (ENVIRONMENT_IS_PTHREAD) runtimeInitialized = true; // The runtime is hosted in the main thread, and bits shared to pthreads via SharedArrayBuffer. No need to init again in pthread.
#endif
function preRun() {
#if USE_PTHREADS
if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread.
#endif
// compatibility - merge in anything from Module['preRun'] at this time
if (Module['preRun']) {
if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']];
while (Module['preRun'].length) {
addOnPreRun(Module['preRun'].shift());
}
}
callRuntimeCallbacks(__ATPRERUN__);
}
function ensureInitRuntime() {
#if STACK_OVERFLOW_CHECK
checkStackCookie();
#endif
#if USE_PTHREADS
if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread.
#endif
if (runtimeInitialized) return;
runtimeInitialized = true;
#if USE_PTHREADS
// Pass the thread address inside the asm.js scope to store it for fast access that avoids the need for a FFI out.
__register_pthread_ptr(PThread.mainThreadBlock, /*isMainBrowserThread=*/!ENVIRONMENT_IS_WORKER, /*isMainRuntimeThread=*/1);
#endif
callRuntimeCallbacks(__ATINIT__);
}
function preMain() {
#if STACK_OVERFLOW_CHECK
checkStackCookie();
#endif
#if USE_PTHREADS
if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread.
#endif
callRuntimeCallbacks(__ATMAIN__);
}
function exitRuntime() {
#if STACK_OVERFLOW_CHECK
checkStackCookie();
#endif
#if USE_PTHREADS
if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread.
#endif
callRuntimeCallbacks(__ATEXIT__);
runtimeExited = true;
}
function postRun() {
#if STACK_OVERFLOW_CHECK
checkStackCookie();
#endif
#if USE_PTHREADS
if (ENVIRONMENT_IS_PTHREAD) return; // PThreads reuse the runtime from the main thread.
#endif
// compatibility - merge in anything from Module['postRun'] at this time
if (Module['postRun']) {
if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']];
while (Module['postRun'].length) {
addOnPostRun(Module['postRun'].shift());
}
}
callRuntimeCallbacks(__ATPOSTRUN__);
}
function addOnPreRun(cb) {
__ATPRERUN__.unshift(cb);
}
function addOnInit(cb) {
__ATINIT__.unshift(cb);
}
function addOnPreMain(cb) {
__ATMAIN__.unshift(cb);
}
function addOnExit(cb) {
__ATEXIT__.unshift(cb);
}
function addOnPostRun(cb) {
__ATPOSTRUN__.unshift(cb);
}
// Deprecated: This function should not be called because it is unsafe and does not provide
// a maximum length limit of how many bytes it is allowed to write. Prefer calling the
// function stringToUTF8Array() instead, which takes in a maximum length that can be used
// to be secure from out of bounds writes.
/** @deprecated */
function writeStringToMemory(string, buffer, dontAddNull) {
warnOnce('writeStringToMemory is deprecated and should not be called! Use stringToUTF8() instead!');
var /** @type {number} */ lastChar, /** @type {number} */ end;
if (dontAddNull) {
// stringToUTF8Array always appends null. If we don't want to do that, remember the
// character that existed at the location where the null will be placed, and restore
// that after the write (below).
end = buffer + lengthBytesUTF8(string);
lastChar = HEAP8[end];
}
stringToUTF8(string, buffer, Infinity);
if (dontAddNull) HEAP8[end] = lastChar; // Restore the value under the null character.
}
function writeArrayToMemory(array, buffer) {
#if ASSERTIONS
assert(array.length >= 0, 'writeArrayToMemory array must have a length (should be an array or typed array)')
#endif
HEAP8.set(array, buffer);
}
function writeAsciiToMemory(str, buffer, dontAddNull) {
for (var i = 0; i < str.length; ++i) {
#if ASSERTIONS
assert(str.charCodeAt(i) === str.charCodeAt(i)&0xff);
#endif
{{{ makeSetValue('buffer++', 0, 'str.charCodeAt(i)', 'i8') }}};
}
// Null-terminate the pointer to the HEAP.
if (!dontAddNull) {{{ makeSetValue('buffer', 0, 0, 'i8') }}};
}
{{{ unSign }}}
{{{ reSign }}}
#if LEGACY_VM_SUPPORT
// check for imul support, and also for correctness ( https://bugs.webkit.org/show_bug.cgi?id=126345 )
if (!Math['imul'] || Math['imul'](0xffffffff, 5) !== -5) Math['imul'] = function imul(a, b) {
var ah = a >>> 16;
var al = a & 0xffff;
var bh = b >>> 16;
var bl = b & 0xffff;
return (al*bl + ((ah*bl + al*bh) << 16))|0;
};
Math.imul = Math['imul'];
#if PRECISE_F32
#if PRECISE_F32 == 1
if (!Math['fround']) {
var froundBuffer = new Float32Array(1);
Math['fround'] = function(x) { froundBuffer[0] = x; return froundBuffer[0] };
}
#else // 2
if (!Math['fround']) Math['fround'] = function(x) { return x };
#endif
Math.fround = Math['fround'];
#else
#if SIMD
if (!Math['fround']) Math['fround'] = function(x) { return x };
#endif
#endif
if (!Math['clz32']) Math['clz32'] = function(x) {
x = x >>> 0;
for (var i = 0; i < 32; i++) {
if (x & (1 << (31 - i))) return i;
}
return 32;
};
Math.clz32 = Math['clz32']
if (!Math['trunc']) Math['trunc'] = function(x) {
return x < 0 ? Math.ceil(x) : Math.floor(x);
};
Math.trunc = Math['trunc'];
#else // LEGACY_VM_SUPPORT
#if ASSERTIONS
assert(Math['imul'] && Math['fround'] && Math['clz32'] && Math['trunc'], 'this is a legacy browser, build with LEGACY_VM_SUPPORT');
#endif
#endif // LEGACY_VM_SUPPORT
var Math_abs = Math.abs;
var Math_cos = Math.cos;
var Math_sin = Math.sin;
var Math_tan = Math.tan;
var Math_acos = Math.acos;
var Math_asin = Math.asin;
var Math_atan = Math.atan;
var Math_atan2 = Math.atan2;
var Math_exp = Math.exp;
var Math_log = Math.log;
var Math_sqrt = Math.sqrt;
var Math_ceil = Math.ceil;
var Math_floor = Math.floor;
var Math_pow = Math.pow;
var Math_imul = Math.imul;
var Math_fround = Math.fround;
var Math_round = Math.round;
var Math_min = Math.min;
var Math_max = Math.max;
var Math_clz32 = Math.clz32;
var Math_trunc = Math.trunc;
// A counter of dependencies for calling run(). If we need to
// do asynchronous work before running, increment this and
// decrement it. Incrementing must happen in a place like
// PRE_RUN_ADDITIONS (used by emcc to add file preloading).
// Note that you can add dependencies in preRun, even though
// it happens right before run - run will be postponed until
// the dependencies are met.
var runDependencies = 0;
var runDependencyWatcher = null;
var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled
#if ASSERTIONS
var runDependencyTracking = {};
#endif
function getUniqueRunDependency(id) {
#if ASSERTIONS
var orig = id;
while (1) {
if (!runDependencyTracking[id]) return id;
id = orig + Math.random();
}
#endif
return id;
}
function addRunDependency(id) {
#if USE_PTHREADS
// We should never get here in pthreads (could no-op this out if called in pthreads, but that might indicate a bug in caller side,
// so good to be very explicit)
assert(!ENVIRONMENT_IS_PTHREAD);
#endif
runDependencies++;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
#if ASSERTIONS
if (id) {
assert(!runDependencyTracking[id]);
runDependencyTracking[id] = 1;
if (runDependencyWatcher === null && typeof setInterval !== 'undefined') {
// Check for missing dependencies every few seconds
runDependencyWatcher = setInterval(function() {
if (ABORT) {
clearInterval(runDependencyWatcher);
runDependencyWatcher = null;
return;
}
var shown = false;
for (var dep in runDependencyTracking) {
if (!shown) {
shown = true;
Module.printErr('still waiting on run dependencies:');
}
Module.printErr('dependency: ' + dep);
}
if (shown) {
Module.printErr('(end of list)');
}
}, 10000);
}
} else {
Module.printErr('warning: run dependency added without ID');
}
#endif
}
function removeRunDependency(id) {
runDependencies--;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
#if ASSERTIONS
if (id) {
assert(runDependencyTracking[id]);
delete runDependencyTracking[id];
} else {
Module.printErr('warning: run dependency removed without ID');
}
#endif
if (runDependencies == 0) {
if (runDependencyWatcher !== null) {
clearInterval(runDependencyWatcher);
runDependencyWatcher = null;
}
if (dependenciesFulfilled) {
var callback = dependenciesFulfilled;
dependenciesFulfilled = null;
callback(); // can add another dependenciesFulfilled
}
}
}
Module["preloadedImages"] = {}; // maps url to image data
Module["preloadedAudios"] = {}; // maps url to audio data
2018-07-11 00:33:36 +00:00
#if (WASM != 0) && (MAIN_MODULE != 0)
Module["preloadedWasm"] = {}; // maps url to wasm instance exports
2018-07-11 00:33:36 +00:00
#endif
#if PGO
var PGOMonitor = {
called: {},
dump: function() {
var dead = [];
for (var i = 0; i < this.allGenerated.length; i++) {
var func = this.allGenerated[i];
if (!this.called[func]) dead.push(func);
}
Module.print('-s DEAD_FUNCTIONS=\'' + JSON.stringify(dead) + '\'\n');
}
};
Module['PGOMonitor'] = PGOMonitor;
__ATEXIT__.push(function() { PGOMonitor.dump() });
addOnPreRun(function() { addRunDependency('pgo') });
#endif
#if RELOCATABLE
{{{
(function() {
// add in RUNTIME_LINKED_LIBS, if provided
if (RUNTIME_LINKED_LIBS.length > 0) {
return "if (!Module['dynamicLibraries']) Module['dynamicLibraries'] = [];\n" +
"Module['dynamicLibraries'] = " + JSON.stringify(RUNTIME_LINKED_LIBS) + ".concat(Module['dynamicLibraries']);\n";
}
return '';
})()
}}}
addOnPreRun(function() {
function loadDynamicLibraries(libs) {
if (libs) {
libs.forEach(function(lib) {
loadDynamicLibrary(lib);
});
}
if (Module['asm']['runPostSets']) {
Module['asm']['runPostSets']();
}
}
// if we can load dynamic libraries synchronously, do so, otherwise, preload
#if WASM
if (Module['dynamicLibraries'] && Module['dynamicLibraries'].length > 0 && !Module['readBinary']) {
// we can't read binary data synchronously, so preload
addRunDependency('preload_dynamicLibraries');
var binaries = [];
Module['dynamicLibraries'].forEach(function(lib) {
fetch(lib, { credentials: 'same-origin' }).then(function(response) {
if (!response['ok']) {
throw "failed to load wasm binary file at '" + lib + "'";
}
return response['arrayBuffer']();
}).then(function(buffer) {
var binary = new Uint8Array(buffer);
binaries.push(binary);
if (binaries.length === Module['dynamicLibraries'].length) {
// we got them all, wonderful
loadDynamicLibraries(binaries);
removeRunDependency('preload_dynamicLibraries');
}
});
});
return;
}
#endif
loadDynamicLibraries(Module['dynamicLibraries']);
});
#if ASSERTIONS
function lookupSymbol(ptr) { // for a pointer, print out all symbols that resolve to it
var ret = [];
for (var i in Module) {
if (Module[i] === ptr) ret.push(i);
}
print(ptr + ' is ' + ret);
}
#endif
#endif
var memoryInitializer = null;
#if USE_PTHREADS
#if PTHREAD_HINT_NUM_CORES < 0
if (!ENVIRONMENT_IS_PTHREAD) addOnPreRun(function() {
addRunDependency('pthreads_querycores');
var bg = document.createElement('div');
bg.style = "position: absolute; top: 0%; left: 0%; width: 100%; height: 100%; background-color: black; z-index:1001; -moz-opacity: 0.8; opacity:.80; filter: alpha(opacity=80);";
var div = document.createElement('div');
var default_num_cores = navigator.hardwareConcurrency || 4;
var hwConcurrency = navigator.hardwareConcurrency ? ("says " + navigator.hardwareConcurrency) : "is not available";
var html = '<div style="width: 100%; text-align:center;"> Thread setup</div> <br /> Number of logical cores: <input type="number" style="width: 50px;" value="'
+ default_num_cores + '" min="1" max="32" id="thread_setup_num_logical_cores"></input> <br /><span style="font-size: 75%;">(<span style="font-family: monospace;">navigator.hardwareConcurrency</span> '
+ hwConcurrency + ')</span> <br />';
#if PTHREAD_POOL_SIZE < 0
html += 'PThread pool size: <input type="number" style="width: 50px;" value="'
+ default_num_cores + '" min="1" max="32" id="thread_setup_pthread_pool_size"></input> <br />';
#endif
html += ' <br /> <input type="button" id="thread_setup_button_go" value="Go"></input>';
div.innerHTML = html;
div.style = 'position: absolute; top: 35%; left: 35%; width: 30%; height: 150px; padding: 16px; border: 16px solid gray; background-color: white; z-index:1002; overflow: auto;';
document.body.appendChild(bg);
document.body.appendChild(div);
var goButton = document.getElementById('thread_setup_button_go');
goButton.onclick = function() {
var num_logical_cores = parseInt(document.getElementById('thread_setup_num_logical_cores').value);
_emscripten_force_num_logical_cores(num_logical_cores);
#if PTHREAD_POOL_SIZE < 0
var pthread_pool_size = parseInt(document.getElementById('thread_setup_pthread_pool_size').value);
PThread.allocateUnusedWorkers(pthread_pool_size, function() { removeRunDependency('pthreads_querycores'); });
#else
removeRunDependency('pthreads_querycores');
#endif
document.body.removeChild(bg);
document.body.removeChild(div);
}
});
#endif
#endif
#if PTHREAD_POOL_SIZE > 0
// To work around https://bugzilla.mozilla.org/show_bug.cgi?id=1049079, warm up a worker pool before starting up the application.
if (!ENVIRONMENT_IS_PTHREAD) addOnPreRun(function() { if (typeof SharedArrayBuffer !== 'undefined') { addRunDependency('pthreads'); PThread.allocateUnusedWorkers({{{PTHREAD_POOL_SIZE}}}, function() { removeRunDependency('pthreads'); }); }});
#endif
#if ASSERTIONS
#if NO_FILESYSTEM
var /* show errors on likely calls to FS when it was not included */ FS = {
error: function() {
abort('Filesystem support (FS) was not included. The problem is that you are using files from JS, but files were not used from C/C++, so filesystem support was not auto-included. You can force-include filesystem support with -s FORCE_FILESYSTEM=1');
},
init: function() { FS.error() },
createDataFile: function() { FS.error() },
createPreloadedFile: function() { FS.error() },
createLazyFile: function() { FS.error() },
open: function() { FS.error() },
mkdev: function() { FS.error() },
registerDevice: function() { FS.error() },
analyzePath: function() { FS.error() },
loadFilesFromDB: function() { FS.error() },
ErrnoError: function ErrnoError() { FS.error() },
};
Module['FS_createDataFile'] = FS.createDataFile;
Module['FS_createPreloadedFile'] = FS.createPreloadedFile;
#endif
#endif
#if CYBERDWARF
var cyberDWARFFile = '{{{ BUNDLED_CD_DEBUG_FILE }}}';
#endif
#include "URIUtils.js"
#if WASM
function integrateWasmJS() {
// wasm.js has several methods for creating the compiled code module here:
// * 'native-wasm' : use native WebAssembly support in the browser
// * 'interpret-s-expr': load s-expression code from a .wast and interpret
// * 'interpret-binary': load binary wasm and interpret
// * 'interpret-asm2wasm': load asm.js code, translate to wasm, and interpret
// * 'asmjs': no wasm, just load the asm.js code and use that (good for testing)
// The method is set at compile time (BINARYEN_METHOD)
// The method can be a comma-separated list, in which case, we will try the
// options one by one. Some of them can fail gracefully, and then we can try
// the next.
// inputs
var method = '{{{ BINARYEN_METHOD }}}';
var wasmTextFile = '{{{ WASM_TEXT_FILE }}}';
var wasmBinaryFile = '{{{ WASM_BINARY_FILE }}}';
var asmjsCodeFile = '{{{ ASMJS_CODE_FILE }}}';
if (typeof Module['locateFile'] === 'function') {
if (!isDataURI(wasmTextFile)) {
wasmTextFile = Module['locateFile'](wasmTextFile);
}
if (!isDataURI(wasmBinaryFile)) {
wasmBinaryFile = Module['locateFile'](wasmBinaryFile);
}
if (!isDataURI(asmjsCodeFile)) {
asmjsCodeFile = Module['locateFile'](asmjsCodeFile);
}
}
// utilities
var wasmPageSize = 64*1024;
var info = {
'global': null,
'env': null,
2018-07-11 00:33:36 +00:00
'asm2wasm': asm2wasmImports,
'parent': Module // Module inside wasm-js.cpp refers to wasm-js.cpp; this allows access to the outside program.
};
var exports = null;
#if BINARYEN_METHOD != 'native-wasm'
function lookupImport(mod, base) {
var lookup = info;
if (mod.indexOf('.') < 0) {
lookup = (lookup || {})[mod];
} else {
var parts = mod.split('.');
lookup = (lookup || {})[parts[0]];
lookup = (lookup || {})[parts[1]];
}
if (base) {
lookup = (lookup || {})[base];
}
if (lookup === undefined) {
abort('bad lookupImport to (' + mod + ').' + base);
}
return lookup;
}
#endif // BINARYEN_METHOD != 'native-wasm'
function mergeMemory(newBuffer) {
// The wasm instance creates its memory. But static init code might have written to
// buffer already, including the mem init file, and we must copy it over in a proper merge.
// TODO: avoid this copy, by avoiding such static init writes
// TODO: in shorter term, just copy up to the last static init write
var oldBuffer = Module['buffer'];
if (newBuffer.byteLength < oldBuffer.byteLength) {
Module['printErr']('the new buffer in mergeMemory is smaller than the previous one. in native wasm, we should grow memory here');
}
var oldView = new Int8Array(oldBuffer);
var newView = new Int8Array(newBuffer);
#if MEM_INIT_IN_WASM == 0
// If we have a mem init file, do not trample it
if (!memoryInitializer) {
oldView.set(newView.subarray(Module['STATIC_BASE'], Module['STATIC_BASE'] + Module['STATIC_BUMP']), Module['STATIC_BASE']);
}
#endif
newView.set(oldView);
updateGlobalBuffer(newBuffer);
updateGlobalBufferViews();
}
function fixImports(imports) {
#if WASM_BACKEND
var ret = {};
for (var i in imports) {
var fixed = i;
if (fixed[0] == '_') fixed = fixed.substr(1);
ret[fixed] = imports[i];
}
return ret;
#else
return imports;
#endif // WASM_BACKEND
}
function getBinary() {
try {
if (Module['wasmBinary']) {
return new Uint8Array(Module['wasmBinary']);
}
#if SUPPORT_BASE64_EMBEDDING
var binary = tryParseAsDataURI(wasmBinaryFile);
if (binary) {
return binary;
}
#endif
if (Module['readBinary']) {
return Module['readBinary'](wasmBinaryFile);
} else {
throw "on the web, we need the wasm binary to be preloaded and set on Module['wasmBinary']. emcc.py will do that for you when generating HTML (but not JS)";
}
}
catch (err) {
abort(err);
}
}
function getBinaryPromise() {
// if we don't have the binary yet, and have the Fetch api, use that
// in some environments, like Electron's render process, Fetch api may be present, but have a different context than expected, let's only use it on the Web
if (!Module['wasmBinary'] && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) && typeof fetch === 'function') {
return fetch(wasmBinaryFile, { credentials: 'same-origin' }).then(function(response) {
if (!response['ok']) {
throw "failed to load wasm binary file at '" + wasmBinaryFile + "'";
}
return response['arrayBuffer']();
}).catch(function () {
return getBinary();
});
}
// Otherwise, getBinary should be able to get it synchronously
return new Promise(function(resolve, reject) {
resolve(getBinary());
});
}
// do-method functions
#if BINARYEN_METHOD != 'native-wasm'
function doJustAsm(global, env, providedBuffer) {
// if no Module.asm, or it's the method handler helper (see below), then apply
// the asmjs
if (typeof Module['asm'] !== 'function' || Module['asm'] === methodHandler) {
if (!Module['asmPreload']) {
// you can load the .asm.js file before this, to avoid this sync xhr and eval
{{{ makeEval("eval(Module['read'](asmjsCodeFile));") }}} // set Module.asm
} else {
Module['asm'] = Module['asmPreload'];
}
}
if (typeof Module['asm'] !== 'function') {
Module['printErr']('asm evalling did not set the module properly');
return false;
}
return Module['asm'](global, env, providedBuffer);
}
#endif // BINARYEN_METHOD != 'native-wasm'
function doNativeWasm(global, env, providedBuffer) {
if (typeof WebAssembly !== 'object') {
#if BINARYEN_METHOD == 'native-wasm'
#if ASSERTIONS
// when the method is just native-wasm, our error message can be very specific
abort('No WebAssembly support found. Build with -s WASM=0 to target JavaScript instead.');
#endif
#endif
Module['printErr']('no native wasm support detected');
return false;
}
// prepare memory import
if (!(Module['wasmMemory'] instanceof WebAssembly.Memory)) {
Module['printErr']('no native wasm Memory in use');
return false;
}
env['memory'] = Module['wasmMemory'];
// Load the wasm module and create an instance of using native support in the JS engine.
info['global'] = {
'NaN': NaN,
'Infinity': Infinity
};
info['global.Math'] = Math;
info['env'] = env;
// handle a generated wasm instance, receiving its exports and
// performing other necessary setup
function receiveInstance(instance, module) {
exports = instance.exports;
if (exports.memory) mergeMemory(exports.memory);
Module['asm'] = exports;
Module["usingWasm"] = true;
#if WASM_BACKEND
// wasm backend stack goes down
STACKTOP = STACK_BASE + TOTAL_STACK;
STACK_MAX = STACK_BASE;
// can't call stackRestore() here since this function can be called
// synchronously before stackRestore() is declared.
Module["asm"]["stackRestore"](STACKTOP);
#endif
#if USE_PTHREADS
// Keep a reference to the compiled module so we can post it to the workers.
Module['wasmModule'] = module;
// Instantiation is synchronous in pthreads and we assert on run dependencies.
if(!ENVIRONMENT_IS_PTHREAD) removeRunDependency('wasm-instantiate');
#else
removeRunDependency('wasm-instantiate');
#endif
}
#if USE_PTHREADS
if (!ENVIRONMENT_IS_PTHREAD) {
addRunDependency('wasm-instantiate'); // we can't run yet (except in a pthread, where we have a custom sync instantiator)
}
#else
addRunDependency('wasm-instantiate');
#endif
// User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback
// to manually instantiate the Wasm module themselves. This allows pages to run the instantiation parallel
// to any other async startup actions they are performing.
if (Module['instantiateWasm']) {
try {
return Module['instantiateWasm'](info, receiveInstance);
} catch(e) {
Module['printErr']('Module.instantiateWasm callback failed with error: ' + e);
return false;
}
}
#if BINARYEN_ASYNC_COMPILATION
#if RUNTIME_LOGGING
Module['printErr']('asynchronously preparing wasm');
#endif
#if ASSERTIONS
// Async compilation can be confusing when an error on the page overwrites Module
// (for example, if the order of elements is wrong, and the one defining Module is
// later), so we save Module and check it later.
var trueModule = Module;
#endif
function receiveInstantiatedSource(output) {
// 'output' is a WebAssemblyInstantiatedSource object which has both the module and instance.
// receiveInstance() will swap in the exports (to Module.asm) so they can be called
#if ASSERTIONS
assert(Module === trueModule, 'the Module object should not be replaced during async compilation - perhaps the order of HTML elements is wrong?');
trueModule = null;
#endif
receiveInstance(output['instance'], output['module']);
}
function instantiateArrayBuffer(receiver) {
getBinaryPromise().then(function(binary) {
return WebAssembly.instantiate(binary, info);
}).then(receiver).catch(function(reason) {
Module['printErr']('failed to asynchronously prepare wasm: ' + reason);
abort(reason);
});
}
// Prefer streaming instantiation if available.
if (!Module['wasmBinary'] &&
typeof WebAssembly.instantiateStreaming === 'function' &&
!isDataURI(wasmBinaryFile) &&
typeof fetch === 'function') {
WebAssembly.instantiateStreaming(fetch(wasmBinaryFile, { credentials: 'same-origin' }), info)
.then(receiveInstantiatedSource)
.catch(function(reason) {
// We expect the most common failure cause to be a bad MIME type for the binary,
// in which case falling back to ArrayBuffer instantiation should work.
Module['printErr']('wasm streaming compile failed: ' + reason);
Module['printErr']('falling back to ArrayBuffer instantiation');
instantiateArrayBuffer(receiveInstantiatedSource);
});
} else {
instantiateArrayBuffer(receiveInstantiatedSource);
}
return {}; // no exports yet; we'll fill them in later
#else
var instance;
try {
instance = new WebAssembly.Instance(new WebAssembly.Module(getBinary()), info)
} catch (e) {
Module['printErr']('failed to compile wasm module: ' + e);
if (e.toString().indexOf('imported Memory with incompatible size') >= 0) {
Module['printErr']('Memory size incompatibility issues may be due to changing TOTAL_MEMORY at runtime to something too large. Use ALLOW_MEMORY_GROWTH to allow any size memory (and also make sure not to set TOTAL_MEMORY at runtime to something smaller than it was at compile time).');
}
return false;
}
receiveInstance(instance);
return exports;
#endif
}
#if BINARYEN_METHOD != 'native-wasm'
function doWasmPolyfill(global, env, providedBuffer, method) {
if (typeof WasmJS !== 'function') {
Module['printErr']('WasmJS not detected - polyfill not bundled?');
return false;
}
// Use wasm.js to polyfill and execute code in a wasm interpreter.
var wasmJS = WasmJS({});
// XXX don't be confused. Module here is in the outside program. wasmJS is the inner wasm-js.cpp.
wasmJS['outside'] = Module; // Inside wasm-js.cpp, Module['outside'] reaches the outside module.
// Information for the instance of the module.
wasmJS['info'] = info;
wasmJS['lookupImport'] = lookupImport;
assert(providedBuffer === Module['buffer']); // we should not even need to pass it as a 3rd arg for wasm, but that's the asm.js way.
info.global = global;
info.env = env;
// polyfill interpreter expects an ArrayBuffer
assert(providedBuffer === Module['buffer']);
env['memory'] = providedBuffer;
assert(env['memory'] instanceof ArrayBuffer);
wasmJS['providedTotalMemory'] = Module['buffer'].byteLength;
// Prepare to generate wasm, using either asm2wasm or s-exprs
var code;
if (method === 'interpret-binary') {
code = getBinary();
} else {
code = Module['read'](method == 'interpret-asm2wasm' ? asmjsCodeFile : wasmTextFile);
}
var temp;
if (method == 'interpret-asm2wasm') {
temp = wasmJS['_malloc'](code.length + 1);
wasmJS['writeAsciiToMemory'](code, temp);
wasmJS['_load_asm2wasm'](temp);
} else if (method === 'interpret-s-expr') {
temp = wasmJS['_malloc'](code.length + 1);
wasmJS['writeAsciiToMemory'](code, temp);
wasmJS['_load_s_expr2wasm'](temp);
} else if (method === 'interpret-binary') {
temp = wasmJS['_malloc'](code.length);
wasmJS['HEAPU8'].set(code, temp);
wasmJS['_load_binary2wasm'](temp, code.length);
} else {
throw 'what? ' + method;
}
wasmJS['_free'](temp);
wasmJS['_instantiate'](temp);
if (Module['newBuffer']) {
mergeMemory(Module['newBuffer']);
Module['newBuffer'] = null;
}
exports = wasmJS['asmExports'];
return exports;
}
#endif // BINARYEN_METHOD != 'native-wasm'
// We may have a preloaded value in Module.asm, save it
Module['asmPreload'] = Module['asm'];
// Memory growth integration code
var asmjsReallocBuffer = Module['reallocBuffer'];
var wasmReallocBuffer = function(size) {
var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB.
size = alignUp(size, PAGE_MULTIPLE); // round up to wasm page size
var old = Module['buffer'];
var oldSize = old.byteLength;
if (Module["usingWasm"]) {
// native wasm support
try {
var result = Module['wasmMemory'].grow((size - oldSize) / wasmPageSize); // .grow() takes a delta compared to the previous size
if (result !== (-1 | 0)) {
// success in native wasm memory growth, get the buffer from the memory
return Module['buffer'] = Module['wasmMemory'].buffer;
} else {
return null;
}
} catch(e) {
#if ASSERTIONS
console.error('Module.reallocBuffer: Attempted to grow from ' + oldSize + ' bytes to ' + size + ' bytes, but got error: ' + e);
#endif
return null;
}
}
#if BINARYEN_METHOD != 'native-wasm'
else {
// wasm interpreter support
exports['__growWasmMemory']((size - oldSize) / wasmPageSize); // tiny wasm method that just does grow_memory
// in interpreter, we replace Module.buffer if we allocate
return Module['buffer'] !== old ? Module['buffer'] : null; // if it was reallocated, it changed
}
#endif // BINARYEN_METHOD != 'native-wasm'
};
Module['reallocBuffer'] = function(size) {
if (finalMethod === 'asmjs') {
return asmjsReallocBuffer(size);
} else {
return wasmReallocBuffer(size);
}
};
// we may try more than one; this is the final one, that worked and we are using
var finalMethod = '';
// Provide an "asm.js function" for the application, called to "link" the asm.js module. We instantiate
// the wasm module at that time, and it receives imports and provides exports and so forth, the app
// doesn't need to care that it is wasm or olyfilled wasm or asm.js.
Module['asm'] = function(global, env, providedBuffer) {
#if BINARYEN_METHOD != 'native-wasm'
global = fixImports(global);
#endif
env = fixImports(env);
// import table
if (!env['table']) {
var TABLE_SIZE = Module['wasmTableSize'];
if (TABLE_SIZE === undefined) TABLE_SIZE = 1024; // works in binaryen interpreter at least
var MAX_TABLE_SIZE = Module['wasmMaxTableSize'];
if (typeof WebAssembly === 'object' && typeof WebAssembly.Table === 'function') {
if (MAX_TABLE_SIZE !== undefined) {
env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, 'maximum': MAX_TABLE_SIZE, 'element': 'anyfunc' });
} else {
env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, element: 'anyfunc' });
}
} else {
env['table'] = new Array(TABLE_SIZE); // works in binaryen interpreter at least
}
Module['wasmTable'] = env['table'];
}
if (!env['memoryBase']) {
env['memoryBase'] = Module['STATIC_BASE']; // tell the memory segments where to place themselves
}
if (!env['tableBase']) {
env['tableBase'] = 0; // table starts at 0 by default, in dynamic linking this will change
}
// try the methods. each should return the exports if it succeeded
var exports;
#if BINARYEN_METHOD == 'native-wasm'
exports = doNativeWasm(global, env, providedBuffer);
#else // native-wasm
#if BINARYEN_METHOD == 'asmjs'
exports = doJustAsm(global, env, providedBuffer);
#else
var methods = method.split(',');
for (var i = 0; i < methods.length; i++) {
var curr = methods[i];
#if RUNTIME_LOGGING
Module['printErr']('trying binaryen method: ' + curr);
#endif
finalMethod = curr;
if (curr === 'native-wasm') {
if (exports = doNativeWasm(global, env, providedBuffer)) break;
} else if (curr === 'asmjs') {
if (exports = doJustAsm(global, env, providedBuffer)) break;
} else if (curr === 'interpret-asm2wasm' || curr === 'interpret-s-expr' || curr === 'interpret-binary') {
if (exports = doWasmPolyfill(global, env, providedBuffer, curr)) break;
} else {
abort('bad method: ' + curr);
}
}
#endif // asmjs
#endif // native-wasm
#if ASSERTIONS
assert(exports, 'no binaryen method succeeded. consider enabling more options, like interpreting, if you want that: https://github.com/kripken/emscripten/wiki/WebAssembly#binaryen-methods');
#else
assert(exports, 'no binaryen method succeeded.');
#endif
#if RUNTIME_LOGGING
Module['printErr']('binaryen method succeeded.');
#endif
return exports;
};
var methodHandler = Module['asm']; // note our method handler, as we may modify Module['asm'] later
}
integrateWasmJS();
#endif
// === Body ===