mirror of https://github.com/pret/pokecrystal.git
939 lines
28 KiB
Python
939 lines
28 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import sys
|
|
import png
|
|
from math import sqrt, floor, ceil
|
|
import argparse
|
|
import operator
|
|
|
|
from lz import Compressed, Decompressed
|
|
|
|
|
|
def split(list_, interval):
|
|
"""
|
|
Split a list by length.
|
|
"""
|
|
for i in xrange(0, len(list_), interval):
|
|
j = min(i + interval, len(list_))
|
|
yield list_[i:j]
|
|
|
|
|
|
def hex_dump(data, length=0x10):
|
|
"""
|
|
just use hexdump -C
|
|
"""
|
|
margin = len('%x' % len(data))
|
|
output = []
|
|
address = 0
|
|
for line in split(data, length):
|
|
output += [
|
|
hex(address)[2:].zfill(margin) +
|
|
' | ' +
|
|
' '.join('%.2x' % byte for byte in line)
|
|
]
|
|
address += length
|
|
return '\n'.join(output)
|
|
|
|
|
|
def get_tiles(image):
|
|
"""
|
|
Split a 2bpp image into 8x8 tiles.
|
|
"""
|
|
return list(split(image, 0x10))
|
|
|
|
def connect(tiles):
|
|
"""
|
|
Combine 8x8 tiles into a 2bpp image.
|
|
"""
|
|
return [byte for tile in tiles for byte in tile]
|
|
|
|
def transpose(tiles, width=None):
|
|
"""
|
|
Transpose a tile arrangement along line y=-x.
|
|
|
|
00 01 02 03 04 05 00 06 0c 12 18 1e
|
|
06 07 08 09 0a 0b 01 07 0d 13 19 1f
|
|
0c 0d 0e 0f 10 11 <-> 02 08 0e 14 1a 20
|
|
12 13 14 15 16 17 03 09 0f 15 1b 21
|
|
18 19 1a 1b 1c 1d 04 0a 10 16 1c 22
|
|
1e 1f 20 21 22 23 05 0b 11 17 1d 23
|
|
|
|
00 01 02 03 00 04 08
|
|
04 05 06 07 <-> 01 05 09
|
|
08 09 0a 0b 02 06 0a
|
|
03 07 0b
|
|
"""
|
|
if width == None:
|
|
width = int(sqrt(len(tiles))) # assume square image
|
|
tiles = sorted(enumerate(tiles), key= lambda (i, tile): i % width)
|
|
return [tile for i, tile in tiles]
|
|
|
|
def transpose_tiles(image, width=None):
|
|
return connect(transpose(get_tiles(image), width))
|
|
|
|
def interleave(tiles, width):
|
|
"""
|
|
00 01 02 03 04 05 00 02 04 06 08 0a
|
|
06 07 08 09 0a 0b 01 03 05 07 09 0b
|
|
0c 0d 0e 0f 10 11 --> 0c 0e 10 12 14 16
|
|
12 13 14 15 16 17 0d 0f 11 13 15 17
|
|
18 19 1a 1b 1c 1d 18 1a 1c 1e 20 22
|
|
1e 1f 20 21 22 23 19 1b 1d 1f 21 23
|
|
"""
|
|
interleaved = []
|
|
left, right = split(tiles[::2], width), split(tiles[1::2], width)
|
|
for l, r in zip(left, right):
|
|
interleaved += l + r
|
|
return interleaved
|
|
|
|
def deinterleave(tiles, width):
|
|
"""
|
|
00 02 04 06 08 0a 00 01 02 03 04 05
|
|
01 03 05 07 09 0b 06 07 08 09 0a 0b
|
|
0c 0e 10 12 14 16 --> 0c 0d 0e 0f 10 11
|
|
0d 0f 11 13 15 17 12 13 14 15 16 17
|
|
18 1a 1c 1e 20 22 18 19 1a 1b 1c 1d
|
|
19 1b 1d 1f 21 23 1e 1f 20 21 22 23
|
|
"""
|
|
deinterleaved = []
|
|
rows = list(split(tiles, width))
|
|
for left, right in zip(rows[::2], rows[1::2]):
|
|
for l, r in zip(left, right):
|
|
deinterleaved += [l, r]
|
|
return deinterleaved
|
|
|
|
def interleave_tiles(image, width):
|
|
return connect(interleave(get_tiles(image), width))
|
|
|
|
def deinterleave_tiles(image, width):
|
|
return connect(deinterleave(get_tiles(image), width))
|
|
|
|
|
|
def condense_image_to_map(image, pic=0):
|
|
"""
|
|
Reduce an image of adjacent frames to an image containing a base frame and any unrepeated tiles.
|
|
Returns the new image and the corresponding tilemap used to reconstruct the input image.
|
|
|
|
If <pic> is 0, ignore the concept of frames. This behavior might be better off as another function.
|
|
"""
|
|
tiles = get_tiles(image)
|
|
new_tiles, tilemap = condense_tiles_to_map(tiles, pic)
|
|
new_image = connect(new_tiles)
|
|
return new_image, tilemap
|
|
|
|
def condense_tiles_to_map(tiles, pic=0):
|
|
"""
|
|
Reduce a sequence of tiles representing adjacent frames to a base frame and any unrepeated tiles.
|
|
Returns the new tiles and the corresponding tilemap used to reconstruct the input tile sequence.
|
|
|
|
If <pic> is 0, ignore the concept of frames. This behavior might be better off as another function.
|
|
"""
|
|
|
|
# Leave the first frame intact for pics.
|
|
new_tiles = tiles[:pic]
|
|
tilemap = range(pic)
|
|
|
|
for i, tile in enumerate(tiles[pic:]):
|
|
if tile not in new_tiles:
|
|
new_tiles.append(tile)
|
|
|
|
if pic:
|
|
# Match the first frame exactly where possible.
|
|
# This reduces the space needed to replace tiles in pic animations.
|
|
# For example, if a tile is repeated twice in the first frame,
|
|
# but at the same relative index as the second tile, use the second index.
|
|
# When creating a bitmask later, the second index would not require a replacement, but the first index would have.
|
|
pic_i = i % pic
|
|
if tile == new_tiles[pic_i]:
|
|
tilemap.append(pic_i)
|
|
else:
|
|
tilemap.append(new_tiles.index(tile))
|
|
else:
|
|
tilemap.append(new_tiles.index(tile))
|
|
return new_tiles, tilemap
|
|
|
|
def test_condense_tiles_to_map():
|
|
test = condense_tiles_to_map(list('abcadbae'))
|
|
if test != (list('abcde'), [0, 1, 2, 0, 3, 1, 0, 4]):
|
|
raise Exception(test)
|
|
test = condense_tiles_to_map(list('abcadbae'), 2)
|
|
if test != (list('abcde'), [0, 1, 2, 0, 3, 1, 0, 4]):
|
|
raise Exception(test)
|
|
test = condense_tiles_to_map(list('abcadbae'), 4)
|
|
if test != (list('abcade'), [0, 1, 2, 3, 4, 1, 0, 5]):
|
|
raise Exception(test)
|
|
test = condense_tiles_to_map(list('abcadbea'), 4)
|
|
if test != (list('abcade'), [0, 1, 2, 3, 4, 1, 5, 3]):
|
|
raise Exception(test)
|
|
|
|
|
|
def to_file(filename, data):
|
|
"""
|
|
Apparently open(filename, 'wb').write(bytearray(data)) won't work.
|
|
"""
|
|
file = open(filename, 'wb')
|
|
for byte in data:
|
|
file.write('%c' % byte)
|
|
file.close()
|
|
|
|
|
|
def decompress_file(filein, fileout=None):
|
|
image = bytearray(open(filein).read())
|
|
de = Decompressed(image)
|
|
|
|
if fileout == None:
|
|
fileout = os.path.splitext(filein)[0]
|
|
to_file(fileout, de.output)
|
|
|
|
|
|
def compress_file(filein, fileout=None):
|
|
image = bytearray(open(filein).read())
|
|
lz = Compressed(image)
|
|
|
|
if fileout == None:
|
|
fileout = filein + '.lz'
|
|
to_file(fileout, lz.output)
|
|
|
|
|
|
def bin_to_rgb(word):
|
|
red = word & 0b11111
|
|
word >>= 5
|
|
green = word & 0b11111
|
|
word >>= 5
|
|
blue = word & 0b11111
|
|
return (red, green, blue)
|
|
|
|
def convert_binary_pal_to_text_by_filename(filename):
|
|
pal = bytearray(open(filename).read())
|
|
return convert_binary_pal_to_text(pal)
|
|
|
|
def convert_binary_pal_to_text(pal):
|
|
output = ''
|
|
words = [hi * 0x100 + lo for lo, hi in zip(pal[::2], pal[1::2])]
|
|
for word in words:
|
|
red, green, blue = ['%.2d' % c for c in bin_to_rgb(word)]
|
|
output += '\tRGB ' + ', '.join((red, green, blue))
|
|
output += '\n'
|
|
return output
|
|
|
|
def read_rgb_macros(lines):
|
|
colors = []
|
|
for line in lines:
|
|
macro = line.split(" ")[0].strip()
|
|
if macro == 'RGB':
|
|
params = ' '.join(line.split(" ")[1:]).split(',')
|
|
red, green, blue = [int(v) for v in params]
|
|
colors += [[red, green, blue]]
|
|
return colors
|
|
|
|
|
|
def rewrite_binary_pals_to_text(filenames):
|
|
for filename in filenames:
|
|
pal_text = convert_binary_pal_to_text_by_filename(filename)
|
|
with open(filename, 'w') as out:
|
|
out.write(pal_text)
|
|
|
|
|
|
def flatten(planar):
|
|
"""
|
|
Flatten planar 2bpp image data into a quaternary pixel map.
|
|
"""
|
|
strips = []
|
|
for bottom, top in split(planar, 2):
|
|
bottom = bottom
|
|
top = top
|
|
strip = []
|
|
for i in xrange(7,-1,-1):
|
|
color = (
|
|
(bottom >> i & 1) +
|
|
(top *2 >> i & 2)
|
|
)
|
|
strip += [color]
|
|
strips += strip
|
|
return strips
|
|
|
|
def to_lines(image, width):
|
|
"""
|
|
Convert a tiled quaternary pixel map to lines of quaternary pixels.
|
|
"""
|
|
tile_width = 8
|
|
tile_height = 8
|
|
num_columns = width / tile_width
|
|
height = len(image) / width
|
|
|
|
lines = []
|
|
for cur_line in xrange(height):
|
|
tile_row = cur_line / tile_height
|
|
line = []
|
|
for column in xrange(num_columns):
|
|
anchor = (
|
|
num_columns * tile_row * tile_width * tile_height +
|
|
column * tile_width * tile_height +
|
|
cur_line % tile_height * tile_width
|
|
)
|
|
line += image[anchor : anchor + tile_width]
|
|
lines += [line]
|
|
return lines
|
|
|
|
|
|
def dmg2rgb(word):
|
|
"""
|
|
For PNGs.
|
|
"""
|
|
def shift(value):
|
|
while True:
|
|
yield value & (2**5 - 1)
|
|
value >>= 5
|
|
word = shift(word)
|
|
# distribution is less even w/ << 3
|
|
red, green, blue = [int(color * 8.25) for color in [word.next() for _ in xrange(3)]]
|
|
alpha = 255
|
|
return (red, green, blue, alpha)
|
|
|
|
|
|
def rgb_to_dmg(color):
|
|
"""
|
|
For PNGs.
|
|
"""
|
|
word = (color['r'] / 8)
|
|
word += (color['g'] / 8) << 5
|
|
word += (color['b'] / 8) << 10
|
|
return word
|
|
|
|
|
|
def pal_to_png(filename):
|
|
"""
|
|
Interpret a .pal file as a png palette.
|
|
"""
|
|
with open(filename) as rgbs:
|
|
colors = read_rgb_macros(rgbs.readlines())
|
|
a = 255
|
|
palette = []
|
|
for color in colors:
|
|
# even distribution over 000-255
|
|
r, g, b = [int(hue * 8.25) for hue in color]
|
|
palette += [(r, g, b, a)]
|
|
white = (255,255,255,255)
|
|
black = (000,000,000,255)
|
|
if white not in palette and len(palette) < 4:
|
|
palette = [white] + palette
|
|
if black not in palette and len(palette) < 4:
|
|
palette = palette + [black]
|
|
return palette
|
|
|
|
|
|
def png_to_rgb(palette):
|
|
"""
|
|
Convert a png palette to rgb macros.
|
|
"""
|
|
output = ''
|
|
for color in palette:
|
|
r, g, b = [color[c] / 8 for c in 'rgb']
|
|
output += '\tRGB ' + ', '.join(['%.2d' % hue for hue in (r, g, b)])
|
|
output += '\n'
|
|
return output
|
|
|
|
|
|
def read_filename_arguments(filename):
|
|
"""
|
|
Infer graphics conversion arguments given a filename.
|
|
|
|
Arguments are separated with '.'.
|
|
"""
|
|
parsed_arguments = {}
|
|
|
|
int_arguments = {
|
|
'w': 'width',
|
|
'h': 'height',
|
|
't': 'tile_padding',
|
|
}
|
|
arguments = os.path.splitext(filename)[0].lstrip('.').split('.')[1:]
|
|
for argument in arguments:
|
|
|
|
# Check for integer arguments first (i.e. "w128").
|
|
arg = argument[0]
|
|
param = argument[1:]
|
|
if param.isdigit():
|
|
arg = int_arguments.get(arg, False)
|
|
if arg:
|
|
parsed_arguments[arg] = int(param)
|
|
|
|
elif argument == 'arrange':
|
|
parsed_arguments['norepeat'] = True
|
|
parsed_arguments['tilemap'] = True
|
|
|
|
# Pic dimensions (i.e. "6x6").
|
|
elif 'x' in argument and any(map(str.isdigit, argument)):
|
|
w, h = argument.split('x')
|
|
if w.isdigit() and h.isdigit():
|
|
parsed_arguments['pic_dimensions'] = (int(w), int(h))
|
|
|
|
else:
|
|
parsed_arguments[argument] = True
|
|
|
|
return parsed_arguments
|
|
|
|
|
|
def export_2bpp_to_png(filein, fileout=None, pal_file=None, height=0, width=0, tile_padding=0, pic_dimensions=None, **kwargs):
|
|
|
|
if fileout == None:
|
|
fileout = os.path.splitext(filein)[0] + '.png'
|
|
|
|
image = open(filein, 'rb').read()
|
|
|
|
arguments = {
|
|
'width': width,
|
|
'height': height,
|
|
'pal_file': pal_file,
|
|
'tile_padding': tile_padding,
|
|
'pic_dimensions': pic_dimensions,
|
|
}
|
|
arguments.update(read_filename_arguments(filein))
|
|
|
|
if pal_file == None:
|
|
if os.path.exists(os.path.splitext(fileout)[0]+'.pal'):
|
|
arguments['pal_file'] = os.path.splitext(fileout)[0]+'.pal'
|
|
|
|
result = convert_2bpp_to_png(image, **arguments)
|
|
width, height, palette, greyscale, bitdepth, px_map = result
|
|
|
|
w = png.Writer(
|
|
width,
|
|
height,
|
|
palette=palette,
|
|
compression=9,
|
|
greyscale=greyscale,
|
|
bitdepth=bitdepth
|
|
)
|
|
with open(fileout, 'wb') as f:
|
|
w.write(f, px_map)
|
|
|
|
|
|
def convert_2bpp_to_png(image, **kwargs):
|
|
"""
|
|
Convert a planar 2bpp graphic to png.
|
|
"""
|
|
|
|
image = bytearray(image)
|
|
|
|
pad_color = bytearray([0])
|
|
|
|
width = kwargs.get('width', 0)
|
|
height = kwargs.get('height', 0)
|
|
tile_padding = kwargs.get('tile_padding', 0)
|
|
pic_dimensions = kwargs.get('pic_dimensions', None)
|
|
pal_file = kwargs.get('pal_file', None)
|
|
interleave = kwargs.get('interleave', False)
|
|
|
|
# Width must be specified to interleave.
|
|
if interleave and width:
|
|
image = interleave_tiles(image, width / 8)
|
|
|
|
# Pad the image by a given number of tiles if asked.
|
|
image += pad_color * 0x10 * tile_padding
|
|
|
|
# Some images are transposed in blocks.
|
|
if pic_dimensions:
|
|
w, h = pic_dimensions
|
|
if not width: width = w * 8
|
|
|
|
pic_length = w * h * 0x10
|
|
|
|
trailing = len(image) % pic_length
|
|
|
|
pic = []
|
|
for i in xrange(0, len(image) - trailing, pic_length):
|
|
pic += transpose_tiles(image[i:i+pic_length], h)
|
|
image = bytearray(pic) + image[len(image) - trailing:]
|
|
|
|
# Pad out trailing lines.
|
|
image += pad_color * 0x10 * ((w - (len(image) / 0x10) % h) % w)
|
|
|
|
def px_length(img):
|
|
return len(img) * 4
|
|
def tile_length(img):
|
|
return len(img) * 4 / (8*8)
|
|
|
|
if width and height:
|
|
tile_width = width / 8
|
|
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
|
|
image += pad_color * 0x10 * more_tile_padding
|
|
|
|
elif width and not height:
|
|
tile_width = width / 8
|
|
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
|
|
image += pad_color * 0x10 * more_tile_padding
|
|
height = px_length(image) / width
|
|
|
|
elif height and not width:
|
|
tile_height = height / 8
|
|
more_tile_padding = (tile_height - (tile_length(image) % tile_height or tile_height))
|
|
image += pad_color * 0x10 * more_tile_padding
|
|
width = px_length(image) / height
|
|
|
|
# at least one dimension should be given
|
|
if width * height != px_length(image):
|
|
# look for possible combos of width/height that would form a rectangle
|
|
matches = []
|
|
# Height need not be divisible by 8, but width must.
|
|
# See pokered gfx/minimize_pic.1bpp.
|
|
for w in range(8, px_length(image) / 2 + 1, 8):
|
|
h = px_length(image) / w
|
|
if w * h == px_length(image):
|
|
matches += [(w, h)]
|
|
# go for the most square image
|
|
if len(matches):
|
|
width, height = sorted(matches, key= lambda (w, h): (h % 8 != 0, w + h))[0] # favor height
|
|
else:
|
|
raise Exception, 'Image can\'t be divided into tiles (%d px)!' % (px_length(image))
|
|
|
|
# convert tiles to lines
|
|
lines = to_lines(flatten(image), width)
|
|
|
|
if pal_file == None:
|
|
palette = None
|
|
greyscale = True
|
|
bitdepth = 2
|
|
px_map = [[3 - pixel for pixel in line] for line in lines]
|
|
|
|
else: # gbc color
|
|
palette = pal_to_png(pal_file)
|
|
greyscale = False
|
|
bitdepth = 8
|
|
px_map = [[pixel for pixel in line] for line in lines]
|
|
|
|
return width, height, palette, greyscale, bitdepth, px_map
|
|
|
|
|
|
def get_pic_animation(tmap, w, h):
|
|
"""
|
|
Generate pic animation data from a combined tilemap of each frame.
|
|
"""
|
|
frame_text = ''
|
|
bitmask_text = ''
|
|
|
|
frames = list(split(tmap, w * h))
|
|
base = frames.pop(0)
|
|
bitmasks = []
|
|
|
|
for i in xrange(len(frames)):
|
|
frame_text += '\tdw .frame{}\n'.format(i + 1)
|
|
|
|
for i, frame in enumerate(frames):
|
|
bitmask = map(operator.ne, frame, base)
|
|
if bitmask not in bitmasks:
|
|
bitmasks.append(bitmask)
|
|
which_bitmask = bitmasks.index(bitmask)
|
|
|
|
mask = iter(bitmask)
|
|
masked_frame = filter(lambda _: mask.next(), frame)
|
|
|
|
frame_text += '.frame{}\n'.format(i + 1)
|
|
frame_text += '\tdb ${:02x} ; bitmask\n'.format(which_bitmask)
|
|
if masked_frame:
|
|
frame_text += '\tdb {}\n'.format(', '.join(
|
|
map('${:02x}'.format, masked_frame)
|
|
))
|
|
|
|
for i, bitmask in enumerate(bitmasks):
|
|
bitmask_text += '; {}\n'.format(i)
|
|
for byte in split(bitmask, 8):
|
|
byte = int(''.join(map(int.__repr__, reversed(byte))), 2)
|
|
bitmask_text += '\tdb %{:08b}\n'.format(byte)
|
|
|
|
return frame_text, bitmask_text
|
|
|
|
|
|
def export_png_to_2bpp(filein, fileout=None, palout=None, **kwargs):
|
|
|
|
arguments = {
|
|
'tile_padding': 0,
|
|
'pic_dimensions': None,
|
|
'animate': False,
|
|
'stupid_bitmask_hack': [],
|
|
}
|
|
arguments.update(kwargs)
|
|
arguments.update(read_filename_arguments(filein))
|
|
|
|
image, arguments = png_to_2bpp(filein, **arguments)
|
|
|
|
if fileout == None:
|
|
fileout = os.path.splitext(filein)[0] + '.2bpp'
|
|
to_file(fileout, image)
|
|
|
|
tmap = arguments.get('tmap')
|
|
|
|
if tmap != None and arguments['animate'] and arguments['pic_dimensions']:
|
|
# Generate pic animation data.
|
|
frame_text, bitmask_text = get_pic_animation(tmap, *arguments['pic_dimensions'])
|
|
|
|
frames_path = os.path.join(os.path.split(fileout)[0], 'frames.asm')
|
|
with open(frames_path, 'w') as out:
|
|
out.write(frame_text)
|
|
|
|
bitmask_path = os.path.join(os.path.split(fileout)[0], 'bitmask.asm')
|
|
|
|
# The following Pokemon have a bitmask dummied out.
|
|
for exception in arguments['stupid_bitmask_hack']:
|
|
if exception in bitmask_path:
|
|
bitmasks = bitmask_text.split(';')
|
|
bitmasks[-1] = bitmasks[-1].replace('1', '0')
|
|
bitmask_text = ';'.join(bitmasks)
|
|
|
|
with open(bitmask_path, 'w') as out:
|
|
out.write(bitmask_text)
|
|
|
|
elif tmap != None and arguments.get('tilemap', False):
|
|
tilemap_path = os.path.splitext(fileout)[0] + '.tilemap'
|
|
to_file(tilemap_path, tmap)
|
|
|
|
palette = arguments.get('palette')
|
|
if palout == None:
|
|
palout = os.path.splitext(fileout)[0] + '.pal'
|
|
export_palette(palette, palout)
|
|
|
|
|
|
def get_image_padding(width, height, wstep=8, hstep=8):
|
|
|
|
padding = {
|
|
'left': 0,
|
|
'right': 0,
|
|
'top': 0,
|
|
'bottom': 0,
|
|
}
|
|
|
|
if width % wstep and width >= wstep:
|
|
pad = float(width % wstep) / 2
|
|
padding['left'] = int(ceil(pad))
|
|
padding['right'] = int(floor(pad))
|
|
|
|
if height % hstep and height >= hstep:
|
|
pad = float(height % hstep) / 2
|
|
padding['top'] = int(ceil(pad))
|
|
padding['bottom'] = int(floor(pad))
|
|
|
|
return padding
|
|
|
|
|
|
def png_to_2bpp(filein, **kwargs):
|
|
"""
|
|
Convert a png image to planar 2bpp.
|
|
"""
|
|
|
|
arguments = {
|
|
'tile_padding': 0,
|
|
'pic_dimensions': False,
|
|
'interleave': False,
|
|
'norepeat': False,
|
|
'tilemap': False,
|
|
}
|
|
arguments.update(kwargs)
|
|
|
|
if type(filein) is str:
|
|
filein = open(filein)
|
|
|
|
assert type(filein) is file
|
|
|
|
width, height, rgba, info = png.Reader(filein).asRGBA8()
|
|
|
|
# png.Reader returns flat pixel data. Nested is easier to work with
|
|
len_px = len('rgba')
|
|
image = []
|
|
palette = []
|
|
for line in rgba:
|
|
newline = []
|
|
for px in xrange(0, len(line), len_px):
|
|
color = dict(zip('rgba', line[px:px+len_px]))
|
|
if color not in palette:
|
|
if len(palette) < 4:
|
|
palette += [color]
|
|
else:
|
|
# TODO Find the nearest match
|
|
print 'WARNING: %s: Color %s truncated to' % (filein, color),
|
|
color = sorted(palette, key=lambda x: sum(x.values()))[0]
|
|
print color
|
|
newline += [color]
|
|
image += [newline]
|
|
|
|
assert len(palette) <= 4, '%s: palette should be 4 colors, is really %d (%s)' % (filein, len(palette), palette)
|
|
|
|
# Pad out smaller palettes with greyscale colors
|
|
greyscale = {
|
|
'black': { 'r': 0x00, 'g': 0x00, 'b': 0x00, 'a': 0xff },
|
|
'grey': { 'r': 0x55, 'g': 0x55, 'b': 0x55, 'a': 0xff },
|
|
'gray': { 'r': 0xaa, 'g': 0xaa, 'b': 0xaa, 'a': 0xff },
|
|
'white': { 'r': 0xff, 'g': 0xff, 'b': 0xff, 'a': 0xff },
|
|
}
|
|
preference = 'white', 'black', 'grey', 'gray'
|
|
for hue in map(greyscale.get, preference):
|
|
if len(palette) >= 4:
|
|
break
|
|
if hue not in palette:
|
|
palette += [hue]
|
|
|
|
palette.sort(key=lambda x: sum(x.values()))
|
|
|
|
# Game Boy palette order
|
|
palette.reverse()
|
|
|
|
# Map pixels to quaternary color ids
|
|
padding = get_image_padding(width, height)
|
|
width += padding['left'] + padding['right']
|
|
height += padding['top'] + padding['bottom']
|
|
pad = bytearray([0])
|
|
|
|
qmap = []
|
|
qmap += pad * width * padding['top']
|
|
for line in image:
|
|
qmap += pad * padding['left']
|
|
for color in line:
|
|
qmap += [palette.index(color)]
|
|
qmap += pad * padding['right']
|
|
qmap += pad * width * padding['bottom']
|
|
|
|
# Graphics are stored in tiles instead of lines
|
|
tile_width = 8
|
|
tile_height = 8
|
|
num_columns = max(width, tile_width) / tile_width
|
|
num_rows = max(height, tile_height) / tile_height
|
|
image = []
|
|
|
|
for row in xrange(num_rows):
|
|
for column in xrange(num_columns):
|
|
|
|
# Split it up into strips to convert to planar data
|
|
for strip in xrange(min(tile_height, height)):
|
|
anchor = (
|
|
row * num_columns * tile_width * tile_height +
|
|
column * tile_width +
|
|
strip * width
|
|
)
|
|
line = qmap[anchor : anchor + tile_width]
|
|
bottom, top = 0, 0
|
|
for bit, quad in enumerate(line):
|
|
bottom += (quad & 1) << (7 - bit)
|
|
top += (quad /2 & 1) << (7 - bit)
|
|
image += [bottom, top]
|
|
|
|
dim = arguments['pic_dimensions']
|
|
if dim:
|
|
if type(dim) in (tuple, list):
|
|
w, h = dim
|
|
else:
|
|
# infer dimensions based on width.
|
|
w = width / tile_width
|
|
h = height / tile_height
|
|
if h % w == 0:
|
|
h = w
|
|
|
|
tiles = get_tiles(image)
|
|
pic_length = w * h
|
|
tile_width = width / 8
|
|
trailing = len(tiles) % pic_length
|
|
new_image = []
|
|
for block in xrange(len(tiles) / pic_length):
|
|
offset = (h * tile_width) * ((block * w) / tile_width) + ((block * w) % tile_width)
|
|
pic = []
|
|
for row in xrange(h):
|
|
index = offset + (row * tile_width)
|
|
pic += tiles[index:index + w]
|
|
new_image += transpose(pic, w)
|
|
new_image += tiles[len(tiles) - trailing:]
|
|
image = connect(new_image)
|
|
|
|
# Remove any tile padding used to make the png rectangular.
|
|
image = image[:len(image) - arguments['tile_padding'] * 0x10]
|
|
|
|
tmap = None
|
|
|
|
if arguments['interleave']:
|
|
image = deinterleave_tiles(image, num_columns)
|
|
|
|
if arguments['pic_dimensions']:
|
|
image, tmap = condense_image_to_map(image, w * h)
|
|
elif arguments['norepeat']:
|
|
image, tmap = condense_image_to_map(image)
|
|
if not arguments['tilemap']:
|
|
tmap = None
|
|
|
|
arguments.update({ 'palette': palette, 'tmap': tmap, })
|
|
|
|
return image, arguments
|
|
|
|
|
|
def export_palette(palette, filename):
|
|
"""
|
|
Export a palette from png to rgb macros in a .pal file.
|
|
"""
|
|
|
|
if os.path.exists(filename):
|
|
|
|
# Pic palettes are 2 colors (black/white are added later).
|
|
with open(filename) as rgbs:
|
|
colors = read_rgb_macros(rgbs.readlines())
|
|
|
|
if len(colors) == 2:
|
|
palette = palette[1:3]
|
|
|
|
text = png_to_rgb(palette)
|
|
with open(filename, 'w') as out:
|
|
out.write(text)
|
|
|
|
|
|
def png_to_lz(filein):
|
|
|
|
name = os.path.splitext(filein)[0]
|
|
|
|
export_png_to_2bpp(filein)
|
|
image = open(name+'.2bpp', 'rb').read()
|
|
to_file(name+'.2bpp'+'.lz', Compressed(image).output)
|
|
|
|
|
|
def convert_2bpp_to_1bpp(data):
|
|
"""
|
|
Convert planar 2bpp image data to 1bpp. Assume images are two colors.
|
|
"""
|
|
return data[::2]
|
|
|
|
def convert_1bpp_to_2bpp(data):
|
|
"""
|
|
Convert 1bpp image data to planar 2bpp (black/white).
|
|
"""
|
|
output = []
|
|
for i in data:
|
|
output += [i, i]
|
|
return output
|
|
|
|
|
|
def export_2bpp_to_1bpp(filename):
|
|
name, extension = os.path.splitext(filename)
|
|
image = open(filename, 'rb').read()
|
|
image = convert_2bpp_to_1bpp(image)
|
|
to_file(name + '.1bpp', image)
|
|
|
|
def export_1bpp_to_2bpp(filename):
|
|
name, extension = os.path.splitext(filename)
|
|
image = open(filename, 'rb').read()
|
|
image = convert_1bpp_to_2bpp(image)
|
|
to_file(name + '.2bpp', image)
|
|
|
|
|
|
def export_1bpp_to_png(filename, fileout=None):
|
|
|
|
if fileout == None:
|
|
fileout = os.path.splitext(filename)[0] + '.png'
|
|
|
|
arguments = read_filename_arguments(filename)
|
|
|
|
image = open(filename, 'rb').read()
|
|
image = convert_1bpp_to_2bpp(image)
|
|
|
|
result = convert_2bpp_to_png(image, **arguments)
|
|
width, height, palette, greyscale, bitdepth, px_map = result
|
|
|
|
w = png.Writer(width, height, palette=palette, compression=9, greyscale=greyscale, bitdepth=bitdepth)
|
|
with open(fileout, 'wb') as f:
|
|
w.write(f, px_map)
|
|
|
|
|
|
def export_png_to_1bpp(filename, fileout=None):
|
|
|
|
if fileout == None:
|
|
fileout = os.path.splitext(filename)[0] + '.1bpp'
|
|
|
|
arguments = read_filename_arguments(filename)
|
|
image = png_to_1bpp(filename, **arguments)
|
|
|
|
to_file(fileout, image)
|
|
|
|
def png_to_1bpp(filename, **kwargs):
|
|
image, kwargs = png_to_2bpp(filename, **kwargs)
|
|
return convert_2bpp_to_1bpp(image)
|
|
|
|
|
|
def convert_to_2bpp(filenames=[]):
|
|
for filename in filenames:
|
|
filename, name, extension = try_decompress(filename)
|
|
if extension == '.1bpp':
|
|
export_1bpp_to_2bpp(filename)
|
|
elif extension == '.2bpp':
|
|
pass
|
|
elif extension == '.png':
|
|
export_png_to_2bpp(filename)
|
|
else:
|
|
raise Exception, "Don't know how to convert {} to 2bpp!".format(filename)
|
|
|
|
def convert_to_1bpp(filenames=[]):
|
|
for filename in filenames:
|
|
filename, name, extension = try_decompress(filename)
|
|
if extension == '.1bpp':
|
|
pass
|
|
elif extension == '.2bpp':
|
|
export_2bpp_to_1bpp(filename)
|
|
elif extension == '.png':
|
|
export_png_to_1bpp(filename)
|
|
else:
|
|
raise Exception, "Don't know how to convert {} to 1bpp!".format(filename)
|
|
|
|
def convert_to_png(filenames=[]):
|
|
for filename in filenames:
|
|
filename, name, extension = try_decompress(filename)
|
|
if extension == '.1bpp':
|
|
export_1bpp_to_png(filename)
|
|
elif extension == '.2bpp':
|
|
export_2bpp_to_png(filename)
|
|
elif extension == '.png':
|
|
pass
|
|
else:
|
|
raise Exception, "Don't know how to convert {} to png!".format(filename)
|
|
|
|
def compress(filenames=[]):
|
|
for filename in filenames:
|
|
data = open(filename, 'rb').read()
|
|
lz_data = Compressed(data).output
|
|
to_file(filename + '.lz', lz_data)
|
|
|
|
def decompress(filenames=[]):
|
|
for filename in filenames:
|
|
name, extension = os.path.splitext(filename)
|
|
lz_data = open(filename, 'rb').read()
|
|
data = Decompressed(lz_data).output
|
|
to_file(name, data)
|
|
|
|
def try_decompress(filename):
|
|
"""
|
|
Try to decompress a graphic when determining the filetype.
|
|
This skips the manual unlz step when attempting
|
|
to convert lz-compressed graphics to png.
|
|
"""
|
|
name, extension = os.path.splitext(filename)
|
|
if extension == '.lz':
|
|
decompress([filename])
|
|
filename = name
|
|
name, extension = os.path.splitext(filename)
|
|
return filename, name, extension
|
|
|
|
|
|
def main():
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument('mode')
|
|
ap.add_argument('filenames', nargs='*')
|
|
args = ap.parse_args()
|
|
|
|
method = {
|
|
'2bpp': convert_to_2bpp,
|
|
'1bpp': convert_to_1bpp,
|
|
'png': convert_to_png,
|
|
'lz': compress,
|
|
'unlz': decompress,
|
|
}.get(args.mode, None)
|
|
|
|
if method == None:
|
|
raise Exception, "Unknown conversion method!"
|
|
|
|
method(args.filenames)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|