mirror of https://github.com/perkeep/perkeep.git
vendor: golang.org/x/image/draw
At rev b3d8467d91f6ab3c9240e1c1e98309baf9ba6343 For rescaling YCbCr images (next commits). Change-Id: I5e6169ddd9cc2b1b933d9482adfbec08c7e378d9
This commit is contained in:
parent
467aa73750
commit
45c77f8379
|
@ -0,0 +1,79 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package draw provides image composition functions.
|
||||
//
|
||||
// See "The Go image/draw package" for an introduction to this package:
|
||||
// http://golang.org/doc/articles/image_draw.html
|
||||
//
|
||||
// This package is a superset of and a drop-in replacement for the image/draw
|
||||
// package in the standard library.
|
||||
package draw
|
||||
|
||||
// This file just contains the API exported by the image/draw package in the
|
||||
// standard library. Other files in this package provide additional features.
|
||||
|
||||
import (
|
||||
"image"
|
||||
"image/color"
|
||||
"image/draw"
|
||||
)
|
||||
|
||||
// Draw calls DrawMask with a nil mask.
|
||||
func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
|
||||
draw.Draw(dst, r, src, sp, draw.Op(op))
|
||||
}
|
||||
|
||||
// DrawMask aligns r.Min in dst with sp in src and mp in mask and then
|
||||
// replaces the rectangle r in dst with the result of a Porter-Duff
|
||||
// composition. A nil mask is treated as opaque.
|
||||
func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
|
||||
draw.DrawMask(dst, r, src, sp, mask, mp, draw.Op(op))
|
||||
}
|
||||
|
||||
// Drawer contains the Draw method.
|
||||
type Drawer interface {
|
||||
// Draw aligns r.Min in dst with sp in src and then replaces the
|
||||
// rectangle r in dst with the result of drawing src on dst.
|
||||
Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
|
||||
}
|
||||
|
||||
// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
|
||||
// diffusion.
|
||||
var FloydSteinberg Drawer = floydSteinberg{}
|
||||
|
||||
type floydSteinberg struct{}
|
||||
|
||||
func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
|
||||
draw.FloydSteinberg.Draw(dst, r, src, sp)
|
||||
}
|
||||
|
||||
// Image is an image.Image with a Set method to change a single pixel.
|
||||
type Image interface {
|
||||
image.Image
|
||||
Set(x, y int, c color.Color)
|
||||
}
|
||||
|
||||
// Op is a Porter-Duff compositing operator.
|
||||
type Op int
|
||||
|
||||
const (
|
||||
// Over specifies ``(src in mask) over dst''.
|
||||
Over Op = Op(draw.Over)
|
||||
// Src specifies ``src in mask''.
|
||||
Src Op = Op(draw.Src)
|
||||
)
|
||||
|
||||
// Draw implements the Drawer interface by calling the Draw function with
|
||||
// this Op.
|
||||
func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
|
||||
(draw.Op(op)).Draw(dst, r, src, sp)
|
||||
}
|
||||
|
||||
// Quantizer produces a palette for an image.
|
||||
type Quantizer interface {
|
||||
// Quantize appends up to cap(p) - len(p) colors to p and returns the
|
||||
// updated palette suitable for converting m to a paletted image.
|
||||
Quantize(p color.Palette, m image.Image) color.Palette
|
||||
}
|
|
@ -0,0 +1,118 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package draw_test
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
"image/color"
|
||||
"image/png"
|
||||
"log"
|
||||
"math"
|
||||
"os"
|
||||
|
||||
"golang.org/x/image/draw"
|
||||
"golang.org/x/image/math/f64"
|
||||
)
|
||||
|
||||
func ExampleDraw() {
|
||||
fSrc, err := os.Open("../testdata/blue-purple-pink.png")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer fSrc.Close()
|
||||
src, err := png.Decode(fSrc)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 400, 300))
|
||||
green := image.NewUniform(color.RGBA{0x00, 0x1f, 0x00, 0xff})
|
||||
draw.Copy(dst, image.Point{}, green, dst.Bounds(), draw.Src, nil)
|
||||
qs := []draw.Interpolator{
|
||||
draw.NearestNeighbor,
|
||||
draw.ApproxBiLinear,
|
||||
draw.CatmullRom,
|
||||
}
|
||||
const cos60, sin60 = 0.5, 0.866025404
|
||||
t := f64.Aff3{
|
||||
+2 * cos60, -2 * sin60, 100,
|
||||
+2 * sin60, +2 * cos60, 100,
|
||||
}
|
||||
|
||||
draw.Copy(dst, image.Point{20, 30}, src, src.Bounds(), draw.Over, nil)
|
||||
for i, q := range qs {
|
||||
q.Scale(dst, image.Rect(200+10*i, 100*i, 600+10*i, 150+100*i), src, src.Bounds(), draw.Over, nil)
|
||||
}
|
||||
draw.NearestNeighbor.Transform(dst, t, src, src.Bounds(), draw.Over, nil)
|
||||
|
||||
red := image.NewNRGBA(image.Rect(0, 0, 16, 16))
|
||||
for y := 0; y < 16; y++ {
|
||||
for x := 0; x < 16; x++ {
|
||||
red.SetNRGBA(x, y, color.NRGBA{
|
||||
R: uint8(x * 0x11),
|
||||
A: uint8(y * 0x11),
|
||||
})
|
||||
}
|
||||
}
|
||||
red.SetNRGBA(0, 0, color.NRGBA{0xff, 0xff, 0x00, 0xff})
|
||||
red.SetNRGBA(15, 15, color.NRGBA{0xff, 0xff, 0x00, 0xff})
|
||||
|
||||
ops := []draw.Op{
|
||||
draw.Over,
|
||||
draw.Src,
|
||||
}
|
||||
for i, op := range ops {
|
||||
dr := image.Rect(120+10*i, 150+60*i, 170+10*i, 200+60*i)
|
||||
draw.NearestNeighbor.Scale(dst, dr, red, red.Bounds(), op, nil)
|
||||
t := f64.Aff3{
|
||||
+cos60, -sin60, float64(190 + 10*i),
|
||||
+sin60, +cos60, float64(140 + 50*i),
|
||||
}
|
||||
draw.NearestNeighbor.Transform(dst, t, red, red.Bounds(), op, nil)
|
||||
}
|
||||
|
||||
dr := image.Rect(0, 0, 128, 128)
|
||||
checkerboard := image.NewAlpha(dr)
|
||||
for y := dr.Min.Y; y < dr.Max.Y; y++ {
|
||||
for x := dr.Min.X; x < dr.Max.X; x++ {
|
||||
if (x/20)%2 == (y/20)%2 {
|
||||
checkerboard.SetAlpha(x, y, color.Alpha{0xff})
|
||||
}
|
||||
}
|
||||
}
|
||||
sr := image.Rect(0, 0, 16, 16)
|
||||
circle := image.NewAlpha(sr)
|
||||
for y := sr.Min.Y; y < sr.Max.Y; y++ {
|
||||
for x := sr.Min.X; x < sr.Max.X; x++ {
|
||||
dx, dy := x-10, y-8
|
||||
if d := 32 * math.Sqrt(float64(dx*dx)+float64(dy*dy)); d < 0xff {
|
||||
circle.SetAlpha(x, y, color.Alpha{0xff - uint8(d)})
|
||||
}
|
||||
}
|
||||
}
|
||||
cyan := image.NewUniform(color.RGBA{0x00, 0xff, 0xff, 0xff})
|
||||
draw.NearestNeighbor.Scale(dst, dr, cyan, sr, draw.Over, &draw.Options{
|
||||
DstMask: checkerboard,
|
||||
SrcMask: circle,
|
||||
})
|
||||
|
||||
// Change false to true to write the resultant image to disk.
|
||||
if true {
|
||||
fDst, err := os.Create("out.png")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer fDst.Close()
|
||||
err = png.Encode(fDst, dst)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
fmt.Printf("dst has bounds %v.\n", dst.Bounds())
|
||||
// Output:
|
||||
// dst has bounds (0,0)-(400,300).
|
||||
}
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,527 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:generate go run gen.go
|
||||
|
||||
package draw
|
||||
|
||||
import (
|
||||
"image"
|
||||
"image/color"
|
||||
"math"
|
||||
"sync"
|
||||
|
||||
"golang.org/x/image/math/f64"
|
||||
)
|
||||
|
||||
// Copy copies the part of the source image defined by src and sr and writes
|
||||
// the result of a Porter-Duff composition to the part of the destination image
|
||||
// defined by dst and the translation of sr so that sr.Min translates to dp.
|
||||
func Copy(dst Image, dp image.Point, src image.Image, sr image.Rectangle, op Op, opts *Options) {
|
||||
var o Options
|
||||
if opts != nil {
|
||||
o = *opts
|
||||
}
|
||||
dr := sr.Add(dp.Sub(sr.Min))
|
||||
if o.DstMask == nil {
|
||||
DrawMask(dst, dr, src, sr.Min, o.SrcMask, o.SrcMaskP.Add(sr.Min), op)
|
||||
} else {
|
||||
NearestNeighbor.Scale(dst, dr, src, sr, op, opts)
|
||||
}
|
||||
}
|
||||
|
||||
// Scaler scales the part of the source image defined by src and sr and writes
|
||||
// the result of a Porter-Duff composition to the part of the destination image
|
||||
// defined by dst and dr.
|
||||
//
|
||||
// A Scaler is safe to use concurrently.
|
||||
type Scaler interface {
|
||||
Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options)
|
||||
}
|
||||
|
||||
// Transformer transforms the part of the source image defined by src and sr
|
||||
// and writes the result of a Porter-Duff composition to the part of the
|
||||
// destination image defined by dst and the affine transform m applied to sr.
|
||||
//
|
||||
// For example, if m is the matrix
|
||||
//
|
||||
// m00 m01 m02
|
||||
// m10 m11 m12
|
||||
//
|
||||
// then the src-space point (sx, sy) maps to the dst-space point
|
||||
// (m00*sx + m01*sy + m02, m10*sx + m11*sy + m12).
|
||||
//
|
||||
// A Transformer is safe to use concurrently.
|
||||
type Transformer interface {
|
||||
Transform(dst Image, m f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options)
|
||||
}
|
||||
|
||||
// Options are optional parameters to Copy, Scale and Transform.
|
||||
//
|
||||
// A nil *Options means to use the default (zero) values of each field.
|
||||
type Options struct {
|
||||
// Masks limit what parts of the dst image are drawn to and what parts of
|
||||
// the src image are drawn from.
|
||||
//
|
||||
// A dst or src mask image having a zero alpha (transparent) pixel value in
|
||||
// the respective coordinate space means that that dst pixel is entirely
|
||||
// unaffected or that src pixel is considered transparent black. A full
|
||||
// alpha (opaque) value means that the dst pixel is maximally affected or
|
||||
// the src pixel contributes maximally. The default values, nil, are
|
||||
// equivalent to fully opaque, infinitely large mask images.
|
||||
//
|
||||
// The DstMask is otherwise known as a clip mask, and its pixels map 1:1 to
|
||||
// the dst image's pixels. DstMaskP in DstMask space corresponds to
|
||||
// image.Point{X:0, Y:0} in dst space. For example, when limiting
|
||||
// repainting to a 'dirty rectangle', use that image.Rectangle and a zero
|
||||
// image.Point as the DstMask and DstMaskP.
|
||||
//
|
||||
// The SrcMask's pixels map 1:1 to the src image's pixels. SrcMaskP in
|
||||
// SrcMask space corresponds to image.Point{X:0, Y:0} in src space. For
|
||||
// example, when drawing font glyphs in a uniform color, use an
|
||||
// *image.Uniform as the src, and use the glyph atlas image and the
|
||||
// per-glyph offset as SrcMask and SrcMaskP:
|
||||
// Copy(dst, dp, image.NewUniform(color), image.Rect(0, 0, glyphWidth, glyphHeight), &Options{
|
||||
// SrcMask: glyphAtlas,
|
||||
// SrcMaskP: glyphOffset,
|
||||
// })
|
||||
DstMask image.Image
|
||||
DstMaskP image.Point
|
||||
SrcMask image.Image
|
||||
SrcMaskP image.Point
|
||||
|
||||
// TODO: a smooth vs sharp edges option, for arbitrary rotations?
|
||||
}
|
||||
|
||||
// Interpolator is an interpolation algorithm, when dst and src pixels don't
|
||||
// have a 1:1 correspondence.
|
||||
//
|
||||
// Of the interpolators provided by this package:
|
||||
// - NearestNeighbor is fast but usually looks worst.
|
||||
// - CatmullRom is slow but usually looks best.
|
||||
// - ApproxBiLinear has reasonable speed and quality.
|
||||
//
|
||||
// The time taken depends on the size of dr. For kernel interpolators, the
|
||||
// speed also depends on the size of sr, and so are often slower than
|
||||
// non-kernel interpolators, especially when scaling down.
|
||||
type Interpolator interface {
|
||||
Scaler
|
||||
Transformer
|
||||
}
|
||||
|
||||
// Kernel is an interpolator that blends source pixels weighted by a symmetric
|
||||
// kernel function.
|
||||
type Kernel struct {
|
||||
// Support is the kernel support and must be >= 0. At(t) is assumed to be
|
||||
// zero when t >= Support.
|
||||
Support float64
|
||||
// At is the kernel function. It will only be called with t in the
|
||||
// range [0, Support).
|
||||
At func(t float64) float64
|
||||
}
|
||||
|
||||
// Scale implements the Scaler interface.
|
||||
func (q *Kernel) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
|
||||
q.newScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy(), false).Scale(dst, dr, src, sr, op, opts)
|
||||
}
|
||||
|
||||
// NewScaler returns a Scaler that is optimized for scaling multiple times with
|
||||
// the same fixed destination and source width and height.
|
||||
func (q *Kernel) NewScaler(dw, dh, sw, sh int) Scaler {
|
||||
return q.newScaler(dw, dh, sw, sh, true)
|
||||
}
|
||||
|
||||
func (q *Kernel) newScaler(dw, dh, sw, sh int, usePool bool) Scaler {
|
||||
z := &kernelScaler{
|
||||
kernel: q,
|
||||
dw: int32(dw),
|
||||
dh: int32(dh),
|
||||
sw: int32(sw),
|
||||
sh: int32(sh),
|
||||
horizontal: newDistrib(q, int32(dw), int32(sw)),
|
||||
vertical: newDistrib(q, int32(dh), int32(sh)),
|
||||
}
|
||||
if usePool {
|
||||
z.pool.New = func() interface{} {
|
||||
tmp := z.makeTmpBuf()
|
||||
return &tmp
|
||||
}
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
var (
|
||||
// NearestNeighbor is the nearest neighbor interpolator. It is very fast,
|
||||
// but usually gives very low quality results. When scaling up, the result
|
||||
// will look 'blocky'.
|
||||
NearestNeighbor = Interpolator(nnInterpolator{})
|
||||
|
||||
// ApproxBiLinear is a mixture of the nearest neighbor and bi-linear
|
||||
// interpolators. It is fast, but usually gives medium quality results.
|
||||
//
|
||||
// It implements bi-linear interpolation when upscaling and a bi-linear
|
||||
// blend of the 4 nearest neighbor pixels when downscaling. This yields
|
||||
// nicer quality than nearest neighbor interpolation when upscaling, but
|
||||
// the time taken is independent of the number of source pixels, unlike the
|
||||
// bi-linear interpolator. When downscaling a large image, the performance
|
||||
// difference can be significant.
|
||||
ApproxBiLinear = Interpolator(ablInterpolator{})
|
||||
|
||||
// BiLinear is the tent kernel. It is slow, but usually gives high quality
|
||||
// results.
|
||||
BiLinear = &Kernel{1, func(t float64) float64 {
|
||||
return 1 - t
|
||||
}}
|
||||
|
||||
// CatmullRom is the Catmull-Rom kernel. It is very slow, but usually gives
|
||||
// very high quality results.
|
||||
//
|
||||
// It is an instance of the more general cubic BC-spline kernel with parameters
|
||||
// B=0 and C=0.5. See Mitchell and Netravali, "Reconstruction Filters in
|
||||
// Computer Graphics", Computer Graphics, Vol. 22, No. 4, pp. 221-228.
|
||||
CatmullRom = &Kernel{2, func(t float64) float64 {
|
||||
if t < 1 {
|
||||
return (1.5*t-2.5)*t*t + 1
|
||||
}
|
||||
return ((-0.5*t+2.5)*t-4)*t + 2
|
||||
}}
|
||||
|
||||
// TODO: a Kaiser-Bessel kernel?
|
||||
)
|
||||
|
||||
type nnInterpolator struct{}
|
||||
|
||||
type ablInterpolator struct{}
|
||||
|
||||
type kernelScaler struct {
|
||||
kernel *Kernel
|
||||
dw, dh, sw, sh int32
|
||||
horizontal, vertical distrib
|
||||
pool sync.Pool
|
||||
}
|
||||
|
||||
func (z *kernelScaler) makeTmpBuf() [][4]float64 {
|
||||
return make([][4]float64, z.dw*z.sh)
|
||||
}
|
||||
|
||||
// source is a range of contribs, their inverse total weight, and that ITW
|
||||
// divided by 0xffff.
|
||||
type source struct {
|
||||
i, j int32
|
||||
invTotalWeight float64
|
||||
invTotalWeightFFFF float64
|
||||
}
|
||||
|
||||
// contrib is the weight of a column or row.
|
||||
type contrib struct {
|
||||
coord int32
|
||||
weight float64
|
||||
}
|
||||
|
||||
// distrib measures how source pixels are distributed over destination pixels.
|
||||
type distrib struct {
|
||||
// sources are what contribs each column or row in the source image owns,
|
||||
// and the total weight of those contribs.
|
||||
sources []source
|
||||
// contribs are the contributions indexed by sources[s].i and sources[s].j.
|
||||
contribs []contrib
|
||||
}
|
||||
|
||||
// newDistrib returns a distrib that distributes sw source columns (or rows)
|
||||
// over dw destination columns (or rows).
|
||||
func newDistrib(q *Kernel, dw, sw int32) distrib {
|
||||
scale := float64(sw) / float64(dw)
|
||||
halfWidth, kernelArgScale := q.Support, 1.0
|
||||
// When shrinking, broaden the effective kernel support so that we still
|
||||
// visit every source pixel.
|
||||
if scale > 1 {
|
||||
halfWidth *= scale
|
||||
kernelArgScale = 1 / scale
|
||||
}
|
||||
|
||||
// Make the sources slice, one source for each column or row, and temporarily
|
||||
// appropriate its elements' fields so that invTotalWeight is the scaled
|
||||
// coordinate of the source column or row, and i and j are the lower and
|
||||
// upper bounds of the range of destination columns or rows affected by the
|
||||
// source column or row.
|
||||
n, sources := int32(0), make([]source, dw)
|
||||
for x := range sources {
|
||||
center := (float64(x)+0.5)*scale - 0.5
|
||||
i := int32(math.Floor(center - halfWidth))
|
||||
if i < 0 {
|
||||
i = 0
|
||||
}
|
||||
j := int32(math.Ceil(center + halfWidth))
|
||||
if j > sw {
|
||||
j = sw
|
||||
if j < i {
|
||||
j = i
|
||||
}
|
||||
}
|
||||
sources[x] = source{i: i, j: j, invTotalWeight: center}
|
||||
n += j - i
|
||||
}
|
||||
|
||||
contribs := make([]contrib, 0, n)
|
||||
for k, b := range sources {
|
||||
totalWeight := 0.0
|
||||
l := int32(len(contribs))
|
||||
for coord := b.i; coord < b.j; coord++ {
|
||||
t := abs((b.invTotalWeight - float64(coord)) * kernelArgScale)
|
||||
if t >= q.Support {
|
||||
continue
|
||||
}
|
||||
weight := q.At(t)
|
||||
if weight == 0 {
|
||||
continue
|
||||
}
|
||||
totalWeight += weight
|
||||
contribs = append(contribs, contrib{coord, weight})
|
||||
}
|
||||
totalWeight = 1 / totalWeight
|
||||
sources[k] = source{
|
||||
i: l,
|
||||
j: int32(len(contribs)),
|
||||
invTotalWeight: totalWeight,
|
||||
invTotalWeightFFFF: totalWeight / 0xffff,
|
||||
}
|
||||
}
|
||||
|
||||
return distrib{sources, contribs}
|
||||
}
|
||||
|
||||
// abs is like math.Abs, but it doesn't care about negative zero, infinities or
|
||||
// NaNs.
|
||||
func abs(f float64) float64 {
|
||||
if f < 0 {
|
||||
f = -f
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// ftou converts the range [0.0, 1.0] to [0, 0xffff].
|
||||
func ftou(f float64) uint16 {
|
||||
i := int32(0xffff*f + 0.5)
|
||||
if i > 0xffff {
|
||||
return 0xffff
|
||||
}
|
||||
if i > 0 {
|
||||
return uint16(i)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// fffftou converts the range [0.0, 65535.0] to [0, 0xffff].
|
||||
func fffftou(f float64) uint16 {
|
||||
i := int32(f + 0.5)
|
||||
if i > 0xffff {
|
||||
return 0xffff
|
||||
}
|
||||
if i > 0 {
|
||||
return uint16(i)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// invert returns the inverse of m.
|
||||
//
|
||||
// TODO: move this into the f64 package, once we work out the convention for
|
||||
// matrix methods in that package: do they modify the receiver, take a dst
|
||||
// pointer argument, or return a new value?
|
||||
func invert(m *f64.Aff3) f64.Aff3 {
|
||||
m00 := +m[3*1+1]
|
||||
m01 := -m[3*0+1]
|
||||
m02 := +m[3*1+2]*m[3*0+1] - m[3*1+1]*m[3*0+2]
|
||||
m10 := -m[3*1+0]
|
||||
m11 := +m[3*0+0]
|
||||
m12 := +m[3*1+0]*m[3*0+2] - m[3*1+2]*m[3*0+0]
|
||||
|
||||
det := m00*m11 - m10*m01
|
||||
|
||||
return f64.Aff3{
|
||||
m00 / det,
|
||||
m01 / det,
|
||||
m02 / det,
|
||||
m10 / det,
|
||||
m11 / det,
|
||||
m12 / det,
|
||||
}
|
||||
}
|
||||
|
||||
func matMul(p, q *f64.Aff3) f64.Aff3 {
|
||||
return f64.Aff3{
|
||||
p[3*0+0]*q[3*0+0] + p[3*0+1]*q[3*1+0],
|
||||
p[3*0+0]*q[3*0+1] + p[3*0+1]*q[3*1+1],
|
||||
p[3*0+0]*q[3*0+2] + p[3*0+1]*q[3*1+2] + p[3*0+2],
|
||||
p[3*1+0]*q[3*0+0] + p[3*1+1]*q[3*1+0],
|
||||
p[3*1+0]*q[3*0+1] + p[3*1+1]*q[3*1+1],
|
||||
p[3*1+0]*q[3*0+2] + p[3*1+1]*q[3*1+2] + p[3*1+2],
|
||||
}
|
||||
}
|
||||
|
||||
// transformRect returns a rectangle dr that contains sr transformed by s2d.
|
||||
func transformRect(s2d *f64.Aff3, sr *image.Rectangle) (dr image.Rectangle) {
|
||||
ps := [...]image.Point{
|
||||
{sr.Min.X, sr.Min.Y},
|
||||
{sr.Max.X, sr.Min.Y},
|
||||
{sr.Min.X, sr.Max.Y},
|
||||
{sr.Max.X, sr.Max.Y},
|
||||
}
|
||||
for i, p := range ps {
|
||||
sxf := float64(p.X)
|
||||
syf := float64(p.Y)
|
||||
dx := int(math.Floor(s2d[0]*sxf + s2d[1]*syf + s2d[2]))
|
||||
dy := int(math.Floor(s2d[3]*sxf + s2d[4]*syf + s2d[5]))
|
||||
|
||||
// The +1 adjustments below are because an image.Rectangle is inclusive
|
||||
// on the low end but exclusive on the high end.
|
||||
|
||||
if i == 0 {
|
||||
dr = image.Rectangle{
|
||||
Min: image.Point{dx + 0, dy + 0},
|
||||
Max: image.Point{dx + 1, dy + 1},
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
if dr.Min.X > dx {
|
||||
dr.Min.X = dx
|
||||
}
|
||||
dx++
|
||||
if dr.Max.X < dx {
|
||||
dr.Max.X = dx
|
||||
}
|
||||
|
||||
if dr.Min.Y > dy {
|
||||
dr.Min.Y = dy
|
||||
}
|
||||
dy++
|
||||
if dr.Max.Y < dy {
|
||||
dr.Max.Y = dy
|
||||
}
|
||||
}
|
||||
return dr
|
||||
}
|
||||
|
||||
func clipAffectedDestRect(adr image.Rectangle, dstMask image.Image, dstMaskP image.Point) (image.Rectangle, image.Image) {
|
||||
if dstMask == nil {
|
||||
return adr, nil
|
||||
}
|
||||
// TODO: enable this fast path once Go 1.5 is released, where an
|
||||
// image.Rectangle implements image.Image.
|
||||
// if r, ok := dstMask.(image.Rectangle); ok {
|
||||
// return adr.Intersect(r.Sub(dstMaskP)), nil
|
||||
// }
|
||||
// TODO: clip to dstMask.Bounds() if the color model implies that out-of-bounds means 0 alpha?
|
||||
return adr, dstMask
|
||||
}
|
||||
|
||||
func transform_Uniform(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Uniform, sr image.Rectangle, bias image.Point, op Op) {
|
||||
switch op {
|
||||
case Over:
|
||||
switch dst := dst.(type) {
|
||||
case *image.RGBA:
|
||||
pr, pg, pb, pa := src.C.RGBA()
|
||||
pa1 := (0xffff - pa) * 0x101
|
||||
|
||||
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
|
||||
dyf := float64(dr.Min.Y+int(dy)) + 0.5
|
||||
d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy))
|
||||
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
|
||||
dxf := float64(dr.Min.X+int(dx)) + 0.5
|
||||
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
|
||||
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
|
||||
if !(image.Point{sx0, sy0}).In(sr) {
|
||||
continue
|
||||
}
|
||||
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
|
||||
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
|
||||
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
|
||||
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
|
||||
}
|
||||
}
|
||||
|
||||
default:
|
||||
pr, pg, pb, pa := src.C.RGBA()
|
||||
pa1 := 0xffff - pa
|
||||
dstColorRGBA64 := &color.RGBA64{}
|
||||
dstColor := color.Color(dstColorRGBA64)
|
||||
|
||||
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
|
||||
dyf := float64(dr.Min.Y+int(dy)) + 0.5
|
||||
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
|
||||
dxf := float64(dr.Min.X+int(dx)) + 0.5
|
||||
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
|
||||
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
|
||||
if !(image.Point{sx0, sy0}).In(sr) {
|
||||
continue
|
||||
}
|
||||
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
|
||||
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
|
||||
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
|
||||
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
|
||||
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
|
||||
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
case Src:
|
||||
switch dst := dst.(type) {
|
||||
case *image.RGBA:
|
||||
pr, pg, pb, pa := src.C.RGBA()
|
||||
pr8 := uint8(pr >> 8)
|
||||
pg8 := uint8(pg >> 8)
|
||||
pb8 := uint8(pb >> 8)
|
||||
pa8 := uint8(pa >> 8)
|
||||
|
||||
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
|
||||
dyf := float64(dr.Min.Y+int(dy)) + 0.5
|
||||
d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy))
|
||||
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
|
||||
dxf := float64(dr.Min.X+int(dx)) + 0.5
|
||||
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
|
||||
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
|
||||
if !(image.Point{sx0, sy0}).In(sr) {
|
||||
continue
|
||||
}
|
||||
dst.Pix[d+0] = pr8
|
||||
dst.Pix[d+1] = pg8
|
||||
dst.Pix[d+2] = pb8
|
||||
dst.Pix[d+3] = pa8
|
||||
}
|
||||
}
|
||||
|
||||
default:
|
||||
pr, pg, pb, pa := src.C.RGBA()
|
||||
dstColorRGBA64 := &color.RGBA64{
|
||||
uint16(pr),
|
||||
uint16(pg),
|
||||
uint16(pb),
|
||||
uint16(pa),
|
||||
}
|
||||
dstColor := color.Color(dstColorRGBA64)
|
||||
|
||||
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
|
||||
dyf := float64(dr.Min.Y+int(dy)) + 0.5
|
||||
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
|
||||
dxf := float64(dr.Min.X+int(dx)) + 0.5
|
||||
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
|
||||
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
|
||||
if !(image.Point{sx0, sy0}).In(sr) {
|
||||
continue
|
||||
}
|
||||
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func opaque(m image.Image) bool {
|
||||
o, ok := m.(interface {
|
||||
Opaque() bool
|
||||
})
|
||||
return ok && o.Opaque()
|
||||
}
|
|
@ -0,0 +1,731 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package draw
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"flag"
|
||||
"fmt"
|
||||
"image"
|
||||
"image/color"
|
||||
"image/png"
|
||||
"math/rand"
|
||||
"os"
|
||||
"reflect"
|
||||
"testing"
|
||||
|
||||
"golang.org/x/image/math/f64"
|
||||
|
||||
_ "image/jpeg"
|
||||
)
|
||||
|
||||
var genGoldenFiles = flag.Bool("gen_golden_files", false, "whether to generate the TestXxx golden files.")
|
||||
|
||||
var transformMatrix = func(scale, tx, ty float64) f64.Aff3 {
|
||||
const cos30, sin30 = 0.866025404, 0.5
|
||||
return f64.Aff3{
|
||||
+scale * cos30, -scale * sin30, tx,
|
||||
+scale * sin30, +scale * cos30, ty,
|
||||
}
|
||||
}
|
||||
|
||||
func encode(filename string, m image.Image) error {
|
||||
f, err := os.Create(filename)
|
||||
if err != nil {
|
||||
return fmt.Errorf("Create: %v", err)
|
||||
}
|
||||
defer f.Close()
|
||||
if err := png.Encode(f, m); err != nil {
|
||||
return fmt.Errorf("Encode: %v", err)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// testInterp tests that interpolating the source image gives the exact
|
||||
// destination image. This is to ensure that any refactoring or optimization of
|
||||
// the interpolation code doesn't change the behavior. Changing the actual
|
||||
// algorithm or kernel used by any particular quality setting will obviously
|
||||
// change the resultant pixels. In such a case, use the gen_golden_files flag
|
||||
// to regenerate the golden files.
|
||||
func testInterp(t *testing.T, w int, h int, direction, prefix, suffix string) {
|
||||
f, err := os.Open("../testdata/" + prefix + suffix)
|
||||
if err != nil {
|
||||
t.Fatalf("Open: %v", err)
|
||||
}
|
||||
defer f.Close()
|
||||
src, _, err := image.Decode(f)
|
||||
if err != nil {
|
||||
t.Fatalf("Decode: %v", err)
|
||||
}
|
||||
|
||||
op, scale := Src, 3.75
|
||||
if prefix == "tux" {
|
||||
op, scale = Over, 0.125
|
||||
}
|
||||
green := image.NewUniform(color.RGBA{0x00, 0x22, 0x11, 0xff})
|
||||
|
||||
testCases := map[string]Interpolator{
|
||||
"nn": NearestNeighbor,
|
||||
"ab": ApproxBiLinear,
|
||||
"bl": BiLinear,
|
||||
"cr": CatmullRom,
|
||||
}
|
||||
for name, q := range testCases {
|
||||
goldenFilename := fmt.Sprintf("../testdata/%s-%s-%s.png", prefix, direction, name)
|
||||
|
||||
got := image.NewRGBA(image.Rect(0, 0, w, h))
|
||||
Copy(got, image.Point{}, green, got.Bounds(), Src, nil)
|
||||
if direction == "rotate" {
|
||||
q.Transform(got, transformMatrix(scale, 40, 10), src, src.Bounds(), op, nil)
|
||||
} else {
|
||||
q.Scale(got, got.Bounds(), src, src.Bounds(), op, nil)
|
||||
}
|
||||
|
||||
if *genGoldenFiles {
|
||||
if err := encode(goldenFilename, got); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
g, err := os.Open(goldenFilename)
|
||||
if err != nil {
|
||||
t.Errorf("Open: %v", err)
|
||||
continue
|
||||
}
|
||||
defer g.Close()
|
||||
wantRaw, err := png.Decode(g)
|
||||
if err != nil {
|
||||
t.Errorf("Decode: %v", err)
|
||||
continue
|
||||
}
|
||||
// convert wantRaw to RGBA.
|
||||
want, ok := wantRaw.(*image.RGBA)
|
||||
if !ok {
|
||||
b := wantRaw.Bounds()
|
||||
want = image.NewRGBA(b)
|
||||
Draw(want, b, wantRaw, b.Min, Src)
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(got, want) {
|
||||
t.Errorf("%s: actual image differs from golden image", goldenFilename)
|
||||
continue
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestScaleDown(t *testing.T) { testInterp(t, 100, 100, "down", "go-turns-two", "-280x360.jpeg") }
|
||||
func TestScaleUp(t *testing.T) { testInterp(t, 75, 100, "up", "go-turns-two", "-14x18.png") }
|
||||
func TestTformSrc(t *testing.T) { testInterp(t, 100, 100, "rotate", "go-turns-two", "-14x18.png") }
|
||||
func TestTformOver(t *testing.T) { testInterp(t, 100, 100, "rotate", "tux", ".png") }
|
||||
|
||||
// TestSimpleTransforms tests Scale and Transform calls that simplify to Copy
|
||||
// or Scale calls.
|
||||
func TestSimpleTransforms(t *testing.T) {
|
||||
f, err := os.Open("../testdata/testpattern.png") // A 100x100 image.
|
||||
if err != nil {
|
||||
t.Fatalf("Open: %v", err)
|
||||
}
|
||||
defer f.Close()
|
||||
src, _, err := image.Decode(f)
|
||||
if err != nil {
|
||||
t.Fatalf("Decode: %v", err)
|
||||
}
|
||||
|
||||
dst0 := image.NewRGBA(image.Rect(0, 0, 120, 150))
|
||||
dst1 := image.NewRGBA(image.Rect(0, 0, 120, 150))
|
||||
for _, op := range []string{"scale/copy", "tform/copy", "tform/scale"} {
|
||||
for _, epsilon := range []float64{0, 1e-50, 1e-1} {
|
||||
Copy(dst0, image.Point{}, image.Transparent, dst0.Bounds(), Src, nil)
|
||||
Copy(dst1, image.Point{}, image.Transparent, dst1.Bounds(), Src, nil)
|
||||
|
||||
switch op {
|
||||
case "scale/copy":
|
||||
dr := image.Rect(10, 30, 10+100, 30+100)
|
||||
if epsilon > 1e-10 {
|
||||
dr.Max.X++
|
||||
}
|
||||
Copy(dst0, image.Point{10, 30}, src, src.Bounds(), Src, nil)
|
||||
ApproxBiLinear.Scale(dst1, dr, src, src.Bounds(), Src, nil)
|
||||
case "tform/copy":
|
||||
Copy(dst0, image.Point{10, 30}, src, src.Bounds(), Src, nil)
|
||||
ApproxBiLinear.Transform(dst1, f64.Aff3{
|
||||
1, 0 + epsilon, 10,
|
||||
0, 1, 30,
|
||||
}, src, src.Bounds(), Src, nil)
|
||||
case "tform/scale":
|
||||
ApproxBiLinear.Scale(dst0, image.Rect(10, 50, 10+50, 50+50), src, src.Bounds(), Src, nil)
|
||||
ApproxBiLinear.Transform(dst1, f64.Aff3{
|
||||
0.5, 0.0 + epsilon, 10,
|
||||
0.0, 0.5, 50,
|
||||
}, src, src.Bounds(), Src, nil)
|
||||
}
|
||||
|
||||
differ := !bytes.Equal(dst0.Pix, dst1.Pix)
|
||||
if epsilon > 1e-10 {
|
||||
if !differ {
|
||||
t.Errorf("%s yielded same pixels, want different pixels: epsilon=%v", op, epsilon)
|
||||
}
|
||||
} else {
|
||||
if differ {
|
||||
t.Errorf("%s yielded different pixels, want same pixels: epsilon=%v", op, epsilon)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSimpleScaleCopy(b *testing.B) {
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 640, 480))
|
||||
src := image.NewRGBA(image.Rect(0, 0, 400, 300))
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
ApproxBiLinear.Scale(dst, image.Rect(10, 20, 10+400, 20+300), src, src.Bounds(), Src, nil)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSimpleTransformCopy(b *testing.B) {
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 640, 480))
|
||||
src := image.NewRGBA(image.Rect(0, 0, 400, 300))
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
ApproxBiLinear.Transform(dst, f64.Aff3{
|
||||
1, 0, 10,
|
||||
0, 1, 20,
|
||||
}, src, src.Bounds(), Src, nil)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSimpleTransformScale(b *testing.B) {
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 640, 480))
|
||||
src := image.NewRGBA(image.Rect(0, 0, 400, 300))
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
ApproxBiLinear.Transform(dst, f64.Aff3{
|
||||
0.5, 0.0, 10,
|
||||
0.0, 0.5, 20,
|
||||
}, src, src.Bounds(), Src, nil)
|
||||
}
|
||||
}
|
||||
|
||||
func TestOps(t *testing.T) {
|
||||
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
|
||||
testCases := map[Op]color.RGBA{
|
||||
Over: color.RGBA{0x7f, 0x00, 0x80, 0xff},
|
||||
Src: color.RGBA{0x7f, 0x00, 0x00, 0x7f},
|
||||
}
|
||||
for op, want := range testCases {
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 2, 2))
|
||||
Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil)
|
||||
|
||||
src := image.NewRGBA(image.Rect(0, 0, 1, 1))
|
||||
src.SetRGBA(0, 0, color.RGBA{0x7f, 0x00, 0x00, 0x7f})
|
||||
|
||||
NearestNeighbor.Scale(dst, dst.Bounds(), src, src.Bounds(), op, nil)
|
||||
|
||||
if got := dst.RGBAAt(0, 0); got != want {
|
||||
t.Errorf("op=%v: got %v, want %v", op, got, want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestNegativeWeights tests that scaling by a kernel that produces negative
|
||||
// weights, such as the Catmull-Rom kernel, doesn't produce an invalid color
|
||||
// according to Go's alpha-premultiplied model.
|
||||
func TestNegativeWeights(t *testing.T) {
|
||||
check := func(m *image.RGBA) error {
|
||||
b := m.Bounds()
|
||||
for y := b.Min.Y; y < b.Max.Y; y++ {
|
||||
for x := b.Min.X; x < b.Max.X; x++ {
|
||||
if c := m.RGBAAt(x, y); c.R > c.A || c.G > c.A || c.B > c.A {
|
||||
return fmt.Errorf("invalid color.RGBA at (%d, %d): %v", x, y, c)
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
src := image.NewRGBA(image.Rect(0, 0, 16, 16))
|
||||
for y := 0; y < 16; y++ {
|
||||
for x := 0; x < 16; x++ {
|
||||
a := y * 0x11
|
||||
src.Set(x, y, color.RGBA{
|
||||
R: uint8(x * 0x11 * a / 0xff),
|
||||
A: uint8(a),
|
||||
})
|
||||
}
|
||||
}
|
||||
if err := check(src); err != nil {
|
||||
t.Fatalf("src image: %v", err)
|
||||
}
|
||||
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 32, 32))
|
||||
CatmullRom.Scale(dst, dst.Bounds(), src, src.Bounds(), Over, nil)
|
||||
if err := check(dst); err != nil {
|
||||
t.Fatalf("dst image: %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
func fillPix(r *rand.Rand, pixs ...[]byte) {
|
||||
for _, pix := range pixs {
|
||||
for i := range pix {
|
||||
pix[i] = uint8(r.Intn(256))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestInterpClipCommute(t *testing.T) {
|
||||
src := image.NewNRGBA(image.Rect(0, 0, 20, 20))
|
||||
fillPix(rand.New(rand.NewSource(0)), src.Pix)
|
||||
|
||||
outer := image.Rect(1, 1, 8, 5)
|
||||
inner := image.Rect(2, 3, 6, 5)
|
||||
qs := []Interpolator{
|
||||
NearestNeighbor,
|
||||
ApproxBiLinear,
|
||||
CatmullRom,
|
||||
}
|
||||
for _, transform := range []bool{false, true} {
|
||||
for _, q := range qs {
|
||||
dst0 := image.NewRGBA(image.Rect(1, 1, 10, 10))
|
||||
dst1 := image.NewRGBA(image.Rect(1, 1, 10, 10))
|
||||
for i := range dst0.Pix {
|
||||
dst0.Pix[i] = uint8(i / 4)
|
||||
dst1.Pix[i] = uint8(i / 4)
|
||||
}
|
||||
|
||||
var interp func(dst *image.RGBA)
|
||||
if transform {
|
||||
interp = func(dst *image.RGBA) {
|
||||
q.Transform(dst, transformMatrix(3.75, 2, 1), src, src.Bounds(), Over, nil)
|
||||
}
|
||||
} else {
|
||||
interp = func(dst *image.RGBA) {
|
||||
q.Scale(dst, outer, src, src.Bounds(), Over, nil)
|
||||
}
|
||||
}
|
||||
|
||||
// Interpolate then clip.
|
||||
interp(dst0)
|
||||
dst0 = dst0.SubImage(inner).(*image.RGBA)
|
||||
|
||||
// Clip then interpolate.
|
||||
dst1 = dst1.SubImage(inner).(*image.RGBA)
|
||||
interp(dst1)
|
||||
|
||||
loop:
|
||||
for y := inner.Min.Y; y < inner.Max.Y; y++ {
|
||||
for x := inner.Min.X; x < inner.Max.X; x++ {
|
||||
if c0, c1 := dst0.RGBAAt(x, y), dst1.RGBAAt(x, y); c0 != c1 {
|
||||
t.Errorf("q=%T: at (%d, %d): c0=%v, c1=%v", q, x, y, c0, c1)
|
||||
break loop
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// translatedImage is an image m translated by t.
|
||||
type translatedImage struct {
|
||||
m image.Image
|
||||
t image.Point
|
||||
}
|
||||
|
||||
func (t *translatedImage) At(x, y int) color.Color { return t.m.At(x-t.t.X, y-t.t.Y) }
|
||||
func (t *translatedImage) Bounds() image.Rectangle { return t.m.Bounds().Add(t.t) }
|
||||
func (t *translatedImage) ColorModel() color.Model { return t.m.ColorModel() }
|
||||
|
||||
// TestSrcTranslationInvariance tests that Scale and Transform are invariant
|
||||
// under src translations. Specifically, when some source pixels are not in the
|
||||
// bottom-right quadrant of src coordinate space, we consistently round down,
|
||||
// not round towards zero.
|
||||
func TestSrcTranslationInvariance(t *testing.T) {
|
||||
f, err := os.Open("../testdata/testpattern.png")
|
||||
if err != nil {
|
||||
t.Fatalf("Open: %v", err)
|
||||
}
|
||||
defer f.Close()
|
||||
src, _, err := image.Decode(f)
|
||||
if err != nil {
|
||||
t.Fatalf("Decode: %v", err)
|
||||
}
|
||||
sr := image.Rect(2, 3, 16, 12)
|
||||
if !sr.In(src.Bounds()) {
|
||||
t.Fatalf("src bounds too small: got %v", src.Bounds())
|
||||
}
|
||||
qs := []Interpolator{
|
||||
NearestNeighbor,
|
||||
ApproxBiLinear,
|
||||
CatmullRom,
|
||||
}
|
||||
deltas := []image.Point{
|
||||
{+0, +0},
|
||||
{+0, +5},
|
||||
{+0, -5},
|
||||
{+5, +0},
|
||||
{-5, +0},
|
||||
{+8, +8},
|
||||
{+8, -8},
|
||||
{-8, +8},
|
||||
{-8, -8},
|
||||
}
|
||||
m00 := transformMatrix(3.75, 0, 0)
|
||||
|
||||
for _, transform := range []bool{false, true} {
|
||||
for _, q := range qs {
|
||||
want := image.NewRGBA(image.Rect(0, 0, 20, 20))
|
||||
if transform {
|
||||
q.Transform(want, m00, src, sr, Over, nil)
|
||||
} else {
|
||||
q.Scale(want, want.Bounds(), src, sr, Over, nil)
|
||||
}
|
||||
for _, delta := range deltas {
|
||||
tsrc := &translatedImage{src, delta}
|
||||
got := image.NewRGBA(image.Rect(0, 0, 20, 20))
|
||||
if transform {
|
||||
m := matMul(&m00, &f64.Aff3{
|
||||
1, 0, -float64(delta.X),
|
||||
0, 1, -float64(delta.Y),
|
||||
})
|
||||
q.Transform(got, m, tsrc, sr.Add(delta), Over, nil)
|
||||
} else {
|
||||
q.Scale(got, got.Bounds(), tsrc, sr.Add(delta), Over, nil)
|
||||
}
|
||||
if !bytes.Equal(got.Pix, want.Pix) {
|
||||
t.Errorf("pix differ for delta=%v, transform=%t, q=%T", delta, transform, q)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSrcMask(t *testing.T) {
|
||||
srcMask := image.NewRGBA(image.Rect(0, 0, 23, 1))
|
||||
srcMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f})
|
||||
srcMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff})
|
||||
srcMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f})
|
||||
srcMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00})
|
||||
red := image.NewUniform(color.RGBA{0xff, 0x00, 0x00, 0xff})
|
||||
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 6, 1))
|
||||
Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil)
|
||||
NearestNeighbor.Scale(dst, dst.Bounds(), red, image.Rect(0, 0, 3, 1), Over, &Options{
|
||||
SrcMask: srcMask,
|
||||
SrcMaskP: image.Point{20, 0},
|
||||
})
|
||||
got := [6]color.RGBA{
|
||||
dst.RGBAAt(0, 0),
|
||||
dst.RGBAAt(1, 0),
|
||||
dst.RGBAAt(2, 0),
|
||||
dst.RGBAAt(3, 0),
|
||||
dst.RGBAAt(4, 0),
|
||||
dst.RGBAAt(5, 0),
|
||||
}
|
||||
want := [6]color.RGBA{
|
||||
{0xff, 0x00, 0x00, 0xff},
|
||||
{0xff, 0x00, 0x00, 0xff},
|
||||
{0x3f, 0x00, 0xc0, 0xff},
|
||||
{0x3f, 0x00, 0xc0, 0xff},
|
||||
{0x00, 0x00, 0xff, 0xff},
|
||||
{0x00, 0x00, 0xff, 0xff},
|
||||
}
|
||||
if got != want {
|
||||
t.Errorf("\ngot %v\nwant %v", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
func TestDstMask(t *testing.T) {
|
||||
dstMask := image.NewRGBA(image.Rect(0, 0, 23, 1))
|
||||
dstMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f})
|
||||
dstMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff})
|
||||
dstMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f})
|
||||
dstMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00})
|
||||
red := image.NewRGBA(image.Rect(0, 0, 1, 1))
|
||||
red.SetRGBA(0, 0, color.RGBA{0xff, 0x00, 0x00, 0xff})
|
||||
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
|
||||
qs := []Interpolator{
|
||||
NearestNeighbor,
|
||||
ApproxBiLinear,
|
||||
CatmullRom,
|
||||
}
|
||||
for _, q := range qs {
|
||||
dst := image.NewRGBA(image.Rect(0, 0, 3, 1))
|
||||
Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil)
|
||||
q.Scale(dst, dst.Bounds(), red, red.Bounds(), Over, &Options{
|
||||
DstMask: dstMask,
|
||||
DstMaskP: image.Point{20, 0},
|
||||
})
|
||||
got := [3]color.RGBA{
|
||||
dst.RGBAAt(0, 0),
|
||||
dst.RGBAAt(1, 0),
|
||||
dst.RGBAAt(2, 0),
|
||||
}
|
||||
want := [3]color.RGBA{
|
||||
{0xff, 0x00, 0x00, 0xff},
|
||||
{0x3f, 0x00, 0xc0, 0xff},
|
||||
{0x00, 0x00, 0xff, 0xff},
|
||||
}
|
||||
if got != want {
|
||||
t.Errorf("q=%T:\ngot %v\nwant %v", q, got, want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestRectDstMask(t *testing.T) {
|
||||
f, err := os.Open("../testdata/testpattern.png")
|
||||
if err != nil {
|
||||
t.Fatalf("Open: %v", err)
|
||||
}
|
||||
defer f.Close()
|
||||
src, _, err := image.Decode(f)
|
||||
if err != nil {
|
||||
t.Fatalf("Decode: %v", err)
|
||||
}
|
||||
m00 := transformMatrix(1, 0, 0)
|
||||
|
||||
bounds := image.Rect(0, 0, 50, 50)
|
||||
dstOutside := image.NewRGBA(bounds)
|
||||
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
||||
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
||||
dstOutside.SetRGBA(x, y, color.RGBA{uint8(5 * x), uint8(5 * y), 0x00, 0xff})
|
||||
}
|
||||
}
|
||||
|
||||
mk := func(q Transformer, dstMask image.Image, dstMaskP image.Point) *image.RGBA {
|
||||
m := image.NewRGBA(bounds)
|
||||
Copy(m, bounds.Min, dstOutside, bounds, Src, nil)
|
||||
q.Transform(m, m00, src, src.Bounds(), Over, &Options{
|
||||
DstMask: dstMask,
|
||||
DstMaskP: dstMaskP,
|
||||
})
|
||||
return m
|
||||
}
|
||||
|
||||
qs := []Interpolator{
|
||||
NearestNeighbor,
|
||||
ApproxBiLinear,
|
||||
CatmullRom,
|
||||
}
|
||||
dstMaskPs := []image.Point{
|
||||
{0, 0},
|
||||
{5, 7},
|
||||
{-3, 0},
|
||||
}
|
||||
rect := image.Rect(10, 10, 30, 40)
|
||||
for _, q := range qs {
|
||||
for _, dstMaskP := range dstMaskPs {
|
||||
dstInside := mk(q, nil, image.Point{})
|
||||
for _, wrap := range []bool{false, true} {
|
||||
// TODO: replace "rectImage(rect)" with "rect" once Go 1.5 is
|
||||
// released, where an image.Rectangle implements image.Image.
|
||||
dstMask := image.Image(rectImage(rect))
|
||||
if wrap {
|
||||
dstMask = srcWrapper{dstMask}
|
||||
}
|
||||
dst := mk(q, dstMask, dstMaskP)
|
||||
|
||||
nError := 0
|
||||
loop:
|
||||
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
||||
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
||||
which := dstOutside
|
||||
if (image.Point{x, y}).Add(dstMaskP).In(rect) {
|
||||
which = dstInside
|
||||
}
|
||||
if got, want := dst.RGBAAt(x, y), which.RGBAAt(x, y); got != want {
|
||||
if nError == 10 {
|
||||
t.Errorf("q=%T dmp=%v wrap=%v: ...and more errors", q, dstMaskP, wrap)
|
||||
break loop
|
||||
}
|
||||
nError++
|
||||
t.Errorf("q=%T dmp=%v wrap=%v: x=%3d y=%3d: got %v, want %v",
|
||||
q, dstMaskP, wrap, x, y, got, want)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: delete this wrapper type once Go 1.5 is released, where an
|
||||
// image.Rectangle implements image.Image.
|
||||
type rectImage image.Rectangle
|
||||
|
||||
func (r rectImage) ColorModel() color.Model { return color.Alpha16Model }
|
||||
func (r rectImage) Bounds() image.Rectangle { return image.Rectangle(r) }
|
||||
func (r rectImage) At(x, y int) color.Color {
|
||||
if (image.Point{x, y}).In(image.Rectangle(r)) {
|
||||
return color.Opaque
|
||||
}
|
||||
return color.Transparent
|
||||
}
|
||||
|
||||
// The fooWrapper types wrap the dst or src image to avoid triggering the
|
||||
// type-specific fast path implementations.
|
||||
type (
|
||||
dstWrapper struct{ Image }
|
||||
srcWrapper struct{ image.Image }
|
||||
)
|
||||
|
||||
func srcGray(boundsHint image.Rectangle) (image.Image, error) {
|
||||
m := image.NewGray(boundsHint)
|
||||
fillPix(rand.New(rand.NewSource(0)), m.Pix)
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func srcNRGBA(boundsHint image.Rectangle) (image.Image, error) {
|
||||
m := image.NewNRGBA(boundsHint)
|
||||
fillPix(rand.New(rand.NewSource(1)), m.Pix)
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func srcRGBA(boundsHint image.Rectangle) (image.Image, error) {
|
||||
m := image.NewRGBA(boundsHint)
|
||||
fillPix(rand.New(rand.NewSource(2)), m.Pix)
|
||||
// RGBA is alpha-premultiplied, so the R, G and B values should
|
||||
// be <= the A values.
|
||||
for i := 0; i < len(m.Pix); i += 4 {
|
||||
m.Pix[i+0] = uint8(uint32(m.Pix[i+0]) * uint32(m.Pix[i+3]) / 0xff)
|
||||
m.Pix[i+1] = uint8(uint32(m.Pix[i+1]) * uint32(m.Pix[i+3]) / 0xff)
|
||||
m.Pix[i+2] = uint8(uint32(m.Pix[i+2]) * uint32(m.Pix[i+3]) / 0xff)
|
||||
}
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func srcUnif(boundsHint image.Rectangle) (image.Image, error) {
|
||||
return image.NewUniform(color.RGBA64{0x1234, 0x5555, 0x9181, 0xbeef}), nil
|
||||
}
|
||||
|
||||
func srcYCbCr(boundsHint image.Rectangle) (image.Image, error) {
|
||||
m := image.NewYCbCr(boundsHint, image.YCbCrSubsampleRatio420)
|
||||
fillPix(rand.New(rand.NewSource(3)), m.Y, m.Cb, m.Cr)
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func srcLarge(boundsHint image.Rectangle) (image.Image, error) {
|
||||
// 3072 x 2304 is over 7 million pixels at 4:3, comparable to a
|
||||
// 2015 smart-phone camera's output.
|
||||
return srcYCbCr(image.Rect(0, 0, 3072, 2304))
|
||||
}
|
||||
|
||||
func srcTux(boundsHint image.Rectangle) (image.Image, error) {
|
||||
// tux.png is a 386 x 395 image.
|
||||
f, err := os.Open("../testdata/tux.png")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("Open: %v", err)
|
||||
}
|
||||
defer f.Close()
|
||||
src, err := png.Decode(f)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("Decode: %v", err)
|
||||
}
|
||||
return src, nil
|
||||
}
|
||||
|
||||
func benchScale(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) {
|
||||
dst := image.NewRGBA(image.Rect(0, 0, w, h))
|
||||
src, err := srcf(image.Rect(0, 0, 1024, 768))
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
dr, sr := dst.Bounds(), src.Bounds()
|
||||
scaler := Scaler(q)
|
||||
if n, ok := q.(interface {
|
||||
NewScaler(int, int, int, int) Scaler
|
||||
}); ok {
|
||||
scaler = n.NewScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy())
|
||||
}
|
||||
|
||||
b.ReportAllocs()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
scaler.Scale(dst, dr, src, sr, op, nil)
|
||||
}
|
||||
}
|
||||
|
||||
func benchTform(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) {
|
||||
dst := image.NewRGBA(image.Rect(0, 0, w, h))
|
||||
src, err := srcf(image.Rect(0, 0, 1024, 768))
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
sr := src.Bounds()
|
||||
m := transformMatrix(3.75, 40, 10)
|
||||
|
||||
b.ReportAllocs()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
q.Transform(dst, m, src, sr, op, nil)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkScaleNNLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, NearestNeighbor) }
|
||||
func BenchmarkScaleABLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, ApproxBiLinear) }
|
||||
func BenchmarkScaleBLLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, BiLinear) }
|
||||
func BenchmarkScaleCRLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, CatmullRom) }
|
||||
|
||||
func BenchmarkScaleNNDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, NearestNeighbor) }
|
||||
func BenchmarkScaleABDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, ApproxBiLinear) }
|
||||
func BenchmarkScaleBLDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, BiLinear) }
|
||||
func BenchmarkScaleCRDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, CatmullRom) }
|
||||
|
||||
func BenchmarkScaleNNUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, NearestNeighbor) }
|
||||
func BenchmarkScaleABUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, ApproxBiLinear) }
|
||||
func BenchmarkScaleBLUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, BiLinear) }
|
||||
func BenchmarkScaleCRUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, CatmullRom) }
|
||||
|
||||
func BenchmarkScaleNNSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, NearestNeighbor) }
|
||||
func BenchmarkScaleNNSrcUnif(b *testing.B) { benchScale(b, 200, 150, Src, srcUnif, NearestNeighbor) }
|
||||
|
||||
func BenchmarkScaleNNOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, NearestNeighbor) }
|
||||
func BenchmarkScaleNNOverUnif(b *testing.B) { benchScale(b, 200, 150, Over, srcUnif, NearestNeighbor) }
|
||||
|
||||
func BenchmarkTformNNSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, NearestNeighbor) }
|
||||
func BenchmarkTformNNSrcUnif(b *testing.B) { benchTform(b, 200, 150, Src, srcUnif, NearestNeighbor) }
|
||||
|
||||
func BenchmarkTformNNOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, NearestNeighbor) }
|
||||
func BenchmarkTformNNOverUnif(b *testing.B) { benchTform(b, 200, 150, Over, srcUnif, NearestNeighbor) }
|
||||
|
||||
func BenchmarkScaleABSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, ApproxBiLinear) }
|
||||
func BenchmarkScaleABSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) }
|
||||
func BenchmarkScaleABSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, ApproxBiLinear) }
|
||||
func BenchmarkScaleABSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) }
|
||||
|
||||
func BenchmarkScaleABOverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, ApproxBiLinear) }
|
||||
func BenchmarkScaleABOverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) }
|
||||
func BenchmarkScaleABOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, ApproxBiLinear) }
|
||||
func BenchmarkScaleABOverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) }
|
||||
|
||||
func BenchmarkTformABSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, ApproxBiLinear) }
|
||||
func BenchmarkTformABSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) }
|
||||
func BenchmarkTformABSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, ApproxBiLinear) }
|
||||
func BenchmarkTformABSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) }
|
||||
|
||||
func BenchmarkTformABOverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, ApproxBiLinear) }
|
||||
func BenchmarkTformABOverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) }
|
||||
func BenchmarkTformABOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, ApproxBiLinear) }
|
||||
func BenchmarkTformABOverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) }
|
||||
|
||||
func BenchmarkScaleCRSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, CatmullRom) }
|
||||
func BenchmarkScaleCRSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, CatmullRom) }
|
||||
func BenchmarkScaleCRSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, CatmullRom) }
|
||||
func BenchmarkScaleCRSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, CatmullRom) }
|
||||
|
||||
func BenchmarkScaleCROverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, CatmullRom) }
|
||||
func BenchmarkScaleCROverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, CatmullRom) }
|
||||
func BenchmarkScaleCROverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, CatmullRom) }
|
||||
func BenchmarkScaleCROverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, CatmullRom) }
|
||||
|
||||
func BenchmarkTformCRSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, CatmullRom) }
|
||||
func BenchmarkTformCRSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, CatmullRom) }
|
||||
func BenchmarkTformCRSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, CatmullRom) }
|
||||
func BenchmarkTformCRSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, CatmullRom) }
|
||||
|
||||
func BenchmarkTformCROverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, CatmullRom) }
|
||||
func BenchmarkTformCROverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, CatmullRom) }
|
||||
func BenchmarkTformCROverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, CatmullRom) }
|
||||
func BenchmarkTformCROverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, CatmullRom) }
|
|
@ -0,0 +1,96 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.5
|
||||
|
||||
package draw
|
||||
|
||||
// This file contains tests that depend on the exact behavior of the
|
||||
// image/color package in the standard library. The color conversion formula
|
||||
// from YCbCr to RGBA changed between Go 1.4 and Go 1.5, so this file's tests
|
||||
// are only enabled for Go 1.5 and above.
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
"image/color"
|
||||
"testing"
|
||||
)
|
||||
|
||||
// TestFastPaths tests that the fast path implementations produce identical
|
||||
// results to the generic implementation.
|
||||
func TestFastPaths(t *testing.T) {
|
||||
drs := []image.Rectangle{
|
||||
image.Rect(0, 0, 10, 10), // The dst bounds.
|
||||
image.Rect(3, 4, 8, 6), // A strict subset of the dst bounds.
|
||||
image.Rect(-3, -5, 2, 4), // Partial out-of-bounds #0.
|
||||
image.Rect(4, -2, 6, 12), // Partial out-of-bounds #1.
|
||||
image.Rect(12, 14, 23, 45), // Complete out-of-bounds.
|
||||
image.Rect(5, 5, 5, 5), // Empty.
|
||||
}
|
||||
srs := []image.Rectangle{
|
||||
image.Rect(0, 0, 12, 9), // The src bounds.
|
||||
image.Rect(2, 2, 10, 8), // A strict subset of the src bounds.
|
||||
image.Rect(10, 5, 20, 20), // Partial out-of-bounds #0.
|
||||
image.Rect(-40, 0, 40, 8), // Partial out-of-bounds #1.
|
||||
image.Rect(-8, -8, -4, -4), // Complete out-of-bounds.
|
||||
image.Rect(5, 5, 5, 5), // Empty.
|
||||
}
|
||||
srcfs := []func(image.Rectangle) (image.Image, error){
|
||||
srcGray,
|
||||
srcNRGBA,
|
||||
srcRGBA,
|
||||
srcUnif,
|
||||
srcYCbCr,
|
||||
}
|
||||
var srcs []image.Image
|
||||
for _, srcf := range srcfs {
|
||||
src, err := srcf(srs[0])
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
srcs = append(srcs, src)
|
||||
}
|
||||
qs := []Interpolator{
|
||||
NearestNeighbor,
|
||||
ApproxBiLinear,
|
||||
CatmullRom,
|
||||
}
|
||||
ops := []Op{
|
||||
Over,
|
||||
Src,
|
||||
}
|
||||
blue := image.NewUniform(color.RGBA{0x11, 0x22, 0x44, 0x7f})
|
||||
|
||||
for _, dr := range drs {
|
||||
for _, src := range srcs {
|
||||
for _, sr := range srs {
|
||||
for _, transform := range []bool{false, true} {
|
||||
for _, q := range qs {
|
||||
for _, op := range ops {
|
||||
dst0 := image.NewRGBA(drs[0])
|
||||
dst1 := image.NewRGBA(drs[0])
|
||||
Draw(dst0, dst0.Bounds(), blue, image.Point{}, Src)
|
||||
Draw(dstWrapper{dst1}, dst1.Bounds(), srcWrapper{blue}, image.Point{}, Src)
|
||||
|
||||
if transform {
|
||||
m := transformMatrix(3.75, 2, 1)
|
||||
q.Transform(dst0, m, src, sr, op, nil)
|
||||
q.Transform(dstWrapper{dst1}, m, srcWrapper{src}, sr, op, nil)
|
||||
} else {
|
||||
q.Scale(dst0, dr, src, sr, op, nil)
|
||||
q.Scale(dstWrapper{dst1}, dr, srcWrapper{src}, sr, op, nil)
|
||||
}
|
||||
|
||||
if !bytes.Equal(dst0.Pix, dst1.Pix) {
|
||||
t.Errorf("pix differ for dr=%v, src=%T, sr=%v, transform=%t, q=%T",
|
||||
dr, src, sr, transform, q)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,37 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package f64 implements float64 vector and matrix types.
|
||||
package f64 // import "golang.org/x/image/math/f64"
|
||||
|
||||
// Vec2 is a 2-element vector.
|
||||
type Vec2 [2]float64
|
||||
|
||||
// Vec3 is a 3-element vector.
|
||||
type Vec3 [3]float64
|
||||
|
||||
// Vec4 is a 4-element vector.
|
||||
type Vec4 [4]float64
|
||||
|
||||
// Mat3 is a 3x3 matrix in row major order.
|
||||
//
|
||||
// m[3*r + c] is the element in the r'th row and c'th column.
|
||||
type Mat3 [9]float64
|
||||
|
||||
// Mat4 is a 4x4 matrix in row major order.
|
||||
//
|
||||
// m[4*r + c] is the element in the r'th row and c'th column.
|
||||
type Mat4 [16]float64
|
||||
|
||||
// Aff3 is a 3x3 affine transformation matrix in row major order, where the
|
||||
// bottom row is implicitly [0 0 1].
|
||||
//
|
||||
// m[3*r + c] is the element in the r'th row and c'th column.
|
||||
type Aff3 [6]float64
|
||||
|
||||
// Aff4 is a 4x4 affine transformation matrix in row major order, where the
|
||||
// bottom row is implicitly [0 0 0 1].
|
||||
//
|
||||
// m[4*r + c] is the element in the r'th row and c'th column.
|
||||
type Aff4 [12]float64
|
Loading…
Reference in New Issue