ff9bb81fa3
Currently a `project.yaml` with wrong key names will result in the following error: ``` ... return all([check(changed_files) for check in checks]) File "infra/presubmit.py", line 229, in check_project_yaml return all([_check_one_project_yaml(path) for path in paths]) File "infra/presubmit.py", line 229, in <listcomp> return all([_check_one_project_yaml(path) for path in paths]) File "infra/presubmit.py", line 223, in _check_one_project_yaml return checker.do_checks() File "infra/presubmit.py", line 131, in do_checks check_function() File "infra/presubmit.py", line 179, in check_valid_section_names self.error(f'{name} is not a valid section name ({valid_names})') NameError: name 'valid_names' is not defined ``` This fixes it. Signed-off-by: David Korczynski <david@adalogics.com> |
||
---|---|---|
.allstar | ||
.clusterfuzzlite | ||
.github | ||
docs | ||
infra | ||
projects | ||
.dockerignore | ||
.gitattributes | ||
.gitignore | ||
.pylintrc | ||
.style.yapf | ||
CONTRIBUTING.md | ||
LICENSE | ||
README.md |
README.md
OSS-Fuzz: Continuous Fuzzing for Open Source Software
Fuzz testing is a well-known technique for uncovering programming errors in software. Many of these detectable errors, like buffer overflow, can have serious security implications. Google has found thousands of security vulnerabilities and stability bugs by deploying guided in-process fuzzing of Chrome components, and we now want to share that service with the open source community.
In cooperation with the Core Infrastructure Initiative and the OpenSSF, OSS-Fuzz aims to make common open source software more secure and stable by combining modern fuzzing techniques with scalable, distributed execution. Projects that do not qualify for OSS-Fuzz (e.g. closed source) can run their own instances of ClusterFuzz or ClusterFuzzLite.
We support the libFuzzer, AFL++, and Honggfuzz fuzzing engines in combination with Sanitizers, as well as ClusterFuzz, a distributed fuzzer execution environment and reporting tool.
Currently, OSS-Fuzz supports C/C++, Rust, Go, Python, Java/JVM, and JavaScript code. Other languages supported by LLVM may work too. OSS-Fuzz supports fuzzing x86_64 and i386 builds.
Overview
Documentation
Read our detailed documentation to learn how to use OSS-Fuzz.
Trophies
As of February 2023, OSS-Fuzz has helped identify and fix over 8,900 vulnerabilities and 28,000 bugs across 850 projects.
Blog posts
- 2016-12-01 - Announcing OSS-Fuzz: Continuous fuzzing for open source software
- 2017-05-08 - OSS-Fuzz: Five months later, and rewarding projects
- 2018-11-06 - A New Chapter for OSS-Fuzz
- 2020-10-09 - Fuzzing internships for Open Source Software
- 2020-12-07 - Improving open source security during the Google summer internship program
- 2021-03-10 - Fuzzing Java in OSS-Fuzz
- 2021-12-16 - Improving OSS-Fuzz and Jazzer to catch Log4Shell
- 2022-09-08 - Fuzzing beyond memory corruption: Finding broader classes of vulnerabilities automatically
- 2023-02-01 - Taking the next step: OSS-Fuzz in 2023