oss-fuzz/infra/experimental/SystemSan/inspect_dns.cpp

237 lines
6.8 KiB
C++

/*
* Copyright 2022 Google LLC
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* A detector that uses ptrace to identify shell injection vulnerabilities. */
/* POSIX */
#include <sys/user.h>
#include <unistd.h>
/* Linux */
#include <arpa/inet.h>
#include <syscall.h>
#include <sys/ptrace.h>
#include <iostream>
#include "inspect_utils.h"
// Arbitrary domain name resolution.
const std::string kArbitraryDomainNameResolution = "Arbitrary domain name resolution";
// Global constant for one file descriptor about of a DNS socket
int kFdDns = 0;
const size_t kDnsHeaderLen = 12;
void inspect_for_arbitrary_dns_connect(pid_t pid, const user_regs_struct &regs) {
auto memory = read_memory(pid, regs.rsi, sizeof(struct sockaddr_in));
if (memory.size()) {
struct sockaddr_in * sa = reinterpret_cast<struct sockaddr_in *>(memory.data());
if (sa->sin_family == AF_INET && htons(sa->sin_port) == 53) {
// save file descriptor for later sendmmsg
kFdDns = regs.rdi;
}
}
}
struct DnsHeader {
uint16_t tx_id;
uint16_t flags;
uint16_t questions;
uint16_t answers;
uint16_t nameservers;
uint16_t additional;
};
struct DnsHeader parse_dns_header(std::vector<std::byte> data) {
struct DnsHeader h;
h.tx_id = (((uint16_t) data[0]) << 8) | ((uint16_t) data[1]);
h.flags = (((uint16_t) data[2]) << 8) | ((uint16_t) data[3]);
h.questions = (((uint16_t) data[4]) << 8) | ((uint16_t) data[5]);
h.answers = (((uint16_t) data[6]) << 8) | ((uint16_t) data[7]);
h.nameservers = (((uint16_t) data[8]) << 8) | ((uint16_t) data[9]);
h.additional = (((uint16_t) data[10]) << 8) | ((uint16_t) data[11]);
return h;
}
bool dns_flags_standard_query(uint16_t flags) {
if ((flags & 0x8000) == 0) {
// Query, not response.
if (((flags & 0x7800) >> 11) == 0) {
// Opcode 0 is standard query.
if ((flags & 0x0200) == 0) {
// Message is not truncated.
if ((flags & 0x0040) == 0) {
// Z-bit reserved flag is unset.
return true;
}
}
}
}
return false;
}
struct DnsRequest {
// Start of name in the byte vector.
size_t offset;
// End of name in the byte vector.
size_t end;
// Length of top level domain.
uint8_t tld_size;
// Number of levels/dots in domain name.
size_t nb_levels;
// DNS type like A is 1.
uint16_t dns_type;
// DNS class like IN is 1.
uint16_t dns_class;
};
struct DnsRequest parse_dns_request(std::vector<std::byte> data, size_t offset) {
struct DnsRequest r;
r.offset = offset;
r.tld_size = 0;
r.nb_levels = 0;
while(offset < data.size()) {
uint8_t rlen = uint8_t(data[offset]);
if (rlen == 0) {
offset++;
break;
}
r.nb_levels++;
offset += rlen+1;
r.tld_size = rlen;
}
if (offset <= 4 + data.size()) {
r.end = offset;
r.dns_type = (((uint16_t) data[offset]) << 8) | ((uint16_t) data[offset+1]);
r.dns_class = (((uint16_t) data[offset+2]) << 8) | ((uint16_t) data[offset+3]);
} else {
r.end = data.size();
}
return r;
}
void log_dns_request(struct DnsRequest r, std::vector<std::byte> data) {
size_t offset = r.offset;
std::cerr << "===Domain resolved: ";
while(offset < r.end) {
uint8_t rlen = uint8_t(data[offset]);
if (rlen == 0) {
break;
}
std::cerr << '.';
for (uint8_t i = 1; i < rlen+1; i++) {
std::cerr << (char) data[offset + i];
}
offset += rlen+1;
}
std::cerr << "===\n";
std::cerr << "===DNS request type: " << r.dns_type << ", class: " << r.dns_class << "===\n";
}
void inspect_for_arbitrary_dns_pkt(std::vector<std::byte> data, pid_t pid) {
if (data.size() < kDnsHeaderLen + 1) {
return;
}
struct DnsHeader h = parse_dns_header(data);
if (h.questions != 1) {
return;
}
if (h.answers != 0 || h.nameservers != 0) {
return;
}
if (!dns_flags_standard_query(h.flags)) {
return;
}
struct DnsRequest req = parse_dns_request(data, kDnsHeaderLen);
// Alert if the top level domain is only one character and
// if there is more than just the TLD.
if (req.tld_size == 1 && req.nb_levels > 1 && req.end < data.size()) {
report_bug(kArbitraryDomainNameResolution, pid);
log_dns_request(req, data);
}
}
void inspect_for_arbitrary_dns_fdbuffer(pid_t pid, const user_regs_struct &regs) {
if (kFdDns > 0 && kFdDns == (int) regs.rdi) {
auto memory = read_memory(pid, regs.rsi, regs.rdx);
if (memory.size()) {
inspect_for_arbitrary_dns_pkt(memory, pid);
}
}
}
void inspect_for_arbitrary_dns_iov(pid_t pid, unsigned long iov) {
auto memory = read_memory(pid, iov, sizeof(struct iovec));
if (memory.size()) {
struct iovec * iovec = reinterpret_cast<struct iovec *>(memory.data());
memory = read_memory(pid, (unsigned long) iovec->iov_base, iovec->iov_len);
if (memory.size()) {
inspect_for_arbitrary_dns_pkt(memory, pid);
}
}
}
void inspect_for_arbitrary_dns_sendmsg(pid_t pid, const user_regs_struct &regs) {
if (kFdDns > 0 && kFdDns == (int) regs.rdi) {
auto memory = read_memory(pid, regs.rsi, sizeof(struct msghdr));
if (memory.size()) {
struct msghdr * msg = reinterpret_cast<struct msghdr *>(memory.data());
if (msg->msg_iovlen == 1) {
inspect_for_arbitrary_dns_iov(pid, (unsigned long) msg->msg_iov);
}
}
}
}
void inspect_for_arbitrary_dns_sendmmsg(pid_t pid, const user_regs_struct &regs) {
if (kFdDns > 0 && kFdDns == (int) regs.rdi) {
auto memory = read_memory(pid, regs.rsi, sizeof(struct mmsghdr));
if (memory.size()) {
struct mmsghdr * msg = reinterpret_cast<struct mmsghdr *>(memory.data());
if (msg->msg_hdr.msg_iovlen == 1) {
inspect_for_arbitrary_dns_iov(pid, (unsigned long) msg->msg_hdr.msg_iov);
}
}
}
}
void inspect_dns_syscalls(pid_t pid, const user_regs_struct &regs) {
switch (regs.orig_rax) {
case __NR_connect:
inspect_for_arbitrary_dns_connect(pid, regs);
break;
case __NR_close:
if (kFdDns > 0 && kFdDns == (int) regs.rdi) {
// reset DNS file descriptor on close
kFdDns = 0;
}
break;
case __NR_sendmmsg:
inspect_for_arbitrary_dns_sendmmsg(pid, regs);
break;
case __NR_sendmsg:
inspect_for_arbitrary_dns_sendmsg(pid, regs);
break;
case __NR_sendto:
// fallthrough
case __NR_write:
inspect_for_arbitrary_dns_fdbuffer(pid, regs);
}
}