lightning/tests/trainer/test_trainer_cli.py

158 lines
5.6 KiB
Python

import inspect
import pickle
import sys
from argparse import ArgumentParser, Namespace
from unittest import mock
import pytest
import torch
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer
@mock.patch('argparse.ArgumentParser.parse_args')
def test_default_args(mock_argparse, tmpdir):
"""Tests default argument parser for Trainer"""
mock_argparse.return_value = Namespace(**Trainer.default_attributes())
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
parser = ArgumentParser(add_help=False)
args = parser.parse_args()
args.logger = logger
args.max_epochs = 5
trainer = Trainer.from_argparse_args(args)
assert isinstance(trainer, Trainer)
assert trainer.max_epochs == 5
@pytest.mark.parametrize('cli_args', [
['--accumulate_grad_batches=22'],
['--print_nan_grads', '--weights_save_path=./'],
[]
])
def test_add_argparse_args_redefined(cli_args):
"""Redefines some default Trainer arguments via the cli and
tests the Trainer initialization correctness.
"""
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = parser.parse_args(cli_args)
# make sure we can pickle args
pickle.dumps(args)
# Check few deprecated args are not in namespace:
for depr_name in ('gradient_clip', 'nb_gpu_nodes', 'max_nb_epochs'):
assert depr_name not in args
trainer = Trainer.from_argparse_args(args=args)
pickle.dumps(trainer)
assert isinstance(trainer, Trainer)
def test_get_init_arguments_and_types():
"""Asserts a correctness of the `get_init_arguments_and_types` Trainer classmethod."""
args = Trainer.get_init_arguments_and_types()
parameters = inspect.signature(Trainer).parameters
assert len(parameters) == len(args)
for arg in args:
assert parameters[arg[0]].default == arg[2]
kwargs = {arg[0]: arg[2] for arg in args}
trainer = Trainer(**kwargs)
assert isinstance(trainer, Trainer)
@pytest.mark.parametrize('cli_args', [
['--callbacks=1', '--logger'],
['--foo', '--bar=1']
])
def test_add_argparse_args_redefined_error(cli_args, monkeypatch):
"""Asserts thar an error raised in case of passing not default cli arguments."""
class _UnkArgError(Exception):
pass
def _raise():
raise _UnkArgError
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
monkeypatch.setattr(parser, 'exit', lambda *args: _raise(), raising=True)
with pytest.raises(_UnkArgError):
parser.parse_args(cli_args)
@pytest.mark.parametrize(['cli_args', 'expected'], [
pytest.param('--auto_lr_find --auto_scale_batch_size power',
{'auto_lr_find': True, 'auto_scale_batch_size': 'power', 'early_stop_callback': False}),
pytest.param('--auto_lr_find any_string --auto_scale_batch_size',
{'auto_lr_find': 'any_string', 'auto_scale_batch_size': True}),
pytest.param('--early_stop_callback',
{'auto_lr_find': False, 'early_stop_callback': True, 'auto_scale_batch_size': False}),
pytest.param('--tpu_cores=8',
{'tpu_cores': 8}),
pytest.param("--tpu_cores=1,",
{'tpu_cores': '1,'})
])
def test_argparse_args_parsing(cli_args, expected):
"""Test multi type argument with bool."""
cli_args = cli_args.split(' ') if cli_args else []
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = Trainer.parse_argparser(parser)
for k, v in expected.items():
assert getattr(args, k) == v
assert Trainer.from_argparse_args(args)
@pytest.mark.parametrize(['cli_args', 'expected_gpu'], [
pytest.param('--gpus 1', [0]),
pytest.param('--gpus 0,', [0]),
])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_argparse_args_parsing_gpus(cli_args, expected_gpu):
"""Test multi type argument with bool."""
cli_args = cli_args.split(' ') if cli_args else []
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = Trainer.parse_argparser(parser)
trainer = Trainer.from_argparse_args(args)
assert trainer.data_parallel_device_ids == expected_gpu
@pytest.mark.skipif(sys.version_info < (3, 7),
reason="signature inspection while mocking is not working in Python < 3.7 despite autospec")
@pytest.mark.parametrize(['cli_args', 'extra_args'], [
pytest.param({}, {}),
pytest.param({'logger': False}, {}),
pytest.param({'logger': False}, {'logger': True}),
pytest.param({'logger': False}, {'checkpoint_callback': True}),
])
def test_init_from_argparse_args(cli_args, extra_args):
unknown_args = dict(unknown_arg=0)
# unkown args in the argparser/namespace should be ignored
with mock.patch('pytorch_lightning.Trainer.__init__', autospec=True, return_value=None) as init:
trainer = Trainer.from_argparse_args(Namespace(**cli_args, **unknown_args), **extra_args)
expected = dict(cli_args)
expected.update(extra_args) # extra args should override any cli arg
init.assert_called_with(trainer, **expected)
# passing in unknown manual args should throw an error
with pytest.raises(TypeError, match=r"__init__\(\) got an unexpected keyword argument 'unknown_arg'"):
Trainer.from_argparse_args(Namespace(**cli_args), **extra_args, **unknown_args)