lightning/tests/trainer/test_checks.py

124 lines
4.5 KiB
Python
Executable File

import pytest
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer, LightningModule
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
# TODO: add matching messages
def test_wrong_train_setting(tmpdir):
"""
* Test that an error is thrown when no `train_dataloader()` is defined
* Test that an error is thrown when no `training_step()` is defined
"""
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.train_dataloader = None
trainer.fit(model)
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.training_step = None
trainer.fit(model)
def test_wrong_configure_optimizers(tmpdir):
""" Test that an error is thrown when no `configure_optimizers()` is defined """
tutils.reset_seed()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate()
model.configure_optimizers = None
trainer.fit(model)
def test_wrong_validation_settings(tmpdir):
""" Test the following cases related to validation configuration of model:
* error if `val_dataloader()` is overridden but `validation_step()` is not
* if both `val_dataloader()` and `validation_step()` is overridden,
throw warning if `val_epoch_end()` is not defined
* error if `validation_step()` is overridden but `val_dataloader()` is not
"""
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# check val_dataloader -> val_step
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.validation_step = None
trainer.fit(model)
# check val_dataloader + val_step -> val_epoch_end
with pytest.warns(RuntimeWarning):
model = EvalModelTemplate(**hparams)
model.validation_epoch_end = None
trainer.fit(model)
# check val_step -> val_dataloader
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.val_dataloader = None
trainer.fit(model)
def test_wrong_test_settigs(tmpdir):
""" Test the following cases related to test configuration of model:
* error if `test_dataloader()` is overridden but `test_step()` is not
* if both `test_dataloader()` and `test_step()` is overridden,
throw warning if `test_epoch_end()` is not defined
* error if `test_step()` is overridden but `test_dataloader()` is not
"""
hparams = EvalModelTemplate.get_default_hparams()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# ----------------
# if have test_dataloader should have test_step
# ----------------
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.test_step = None
trainer.fit(model)
# ----------------
# if have test_dataloader and test_step recommend test_epoch_end
# ----------------
with pytest.warns(RuntimeWarning):
model = EvalModelTemplate(**hparams)
model.test_epoch_end = None
trainer.test(model)
# ----------------
# if have test_step and NO test_dataloader passed in tell user to pass test_dataloader
# ----------------
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.test_dataloader = LightningModule.test_dataloader
trainer.test(model)
# ----------------
# if have test_dataloader and NO test_step tell user to implement test_step
# ----------------
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.test_dataloader = LightningModule.test_dataloader
model.test_step = None
trainer.test(model, test_dataloaders=model.dataloader(train=False))
# ----------------
# if have test_dataloader and test_step but no test_epoch_end warn user
# ----------------
with pytest.warns(RuntimeWarning):
model = EvalModelTemplate(**hparams)
model.test_dataloader = LightningModule.test_dataloader
model.test_epoch_end = None
trainer.test(model, test_dataloaders=model.dataloader(train=False))