lightning/tests
Ethan Harris ab09faa15e
Add support for iterable datasets when val_check_interval=1.0 (#1283)
* Add support for iterable datasets when val_check_interval=1.0

* Update CHANGELOG.md
2020-03-29 15:27:44 -04:00
..
base Remove unnecessary parameters to super() in documentation and source code (#1240) 2020-03-27 12:36:50 +00:00
loggers CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
models calling self.forward() -> self() (#1211) 2020-03-27 08:17:56 +01:00
trainer Add support for iterable datasets when val_check_interval=1.0 (#1283) 2020-03-29 15:27:44 -04:00
Dockerfile CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
README.md CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
__init__.py added init to test folder 2019-07-24 21:32:31 -04:00
collect_env_details.py system info (#1234) 2020-03-27 08:45:52 -04:00
conftest.py Fix amp tests (#661) 2020-01-05 14:34:25 -05:00
install_AMP.sh CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
requirements.txt CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
test_deprecated.py CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
test_profiler.py fix logging config and add profiler test (#1267) 2020-03-29 14:56:36 -04:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash tests/install_AMP.sh

# install dev deps
pip install -r tests/requirements.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under tests/requirements.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v --doctest-modules

# print coverage stats
coverage report -m

# exporting results
coverage xml