lightning/tests/accelerators/test_common.py

151 lines
4.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
import tests.helpers.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.plugins import SingleDevicePlugin
from tests.accelerators.test_dp import CustomClassificationModelDP
from tests.helpers.boring_model import BoringModel
from tests.helpers.datamodules import ClassifDataModule
from tests.helpers.runif import RunIf
@pytest.mark.parametrize(
"trainer_kwargs", (
pytest.param(dict(gpus=1), marks=RunIf(min_gpus=1)),
pytest.param(dict(accelerator="dp", gpus=2), marks=RunIf(min_gpus=2)),
pytest.param(dict(accelerator="ddp_spawn", gpus=2), marks=RunIf(min_gpus=2)),
)
)
def test_evaluate(tmpdir, trainer_kwargs):
tutils.set_random_master_port()
dm = ClassifDataModule()
model = CustomClassificationModelDP()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=10,
limit_val_batches=10,
deterministic=True,
**trainer_kwargs
)
trainer.fit(model, datamodule=dm)
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
old_weights = model.layer_0.weight.clone().detach().cpu()
result = trainer.validate(datamodule=dm)
assert result[0]['val_acc'] > 0.55
result = trainer.test(datamodule=dm)
assert result[0]['test_acc'] > 0.55
# make sure weights didn't change
new_weights = model.layer_0.weight.clone().detach().cpu()
torch.testing.assert_allclose(old_weights, new_weights)
def test_model_parallel_setup_called(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.configure_sharded_model_called = False
self.layer = None
def configure_sharded_model(self):
self.configure_sharded_model_called = True
self.layer = torch.nn.Linear(32, 2)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
)
trainer.fit(model)
assert model.configure_sharded_model_called
class DummyModel(BoringModel):
def __init__(self):
super().__init__()
self.configure_sharded_model_called = False
def configure_sharded_model(self):
self.configure_sharded_model_called = True
def test_configure_sharded_model_false(tmpdir):
"""Ensure ``configure_sharded_model`` is not called, when turned off"""
class CustomPlugin(SingleDevicePlugin):
@property
def call_configure_sharded_model_hook(self) -> bool:
return False
model = DummyModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
plugins=CustomPlugin(device=torch.device("cpu"))
)
trainer.fit(model)
assert not model.configure_sharded_model_called
def test_accelerator_configure_sharded_model_called_once(tmpdir):
"""Ensure that the configure sharded model hook is called, and set to False after to ensure not called again."""
model = DummyModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
)
assert trainer.accelerator.call_configure_sharded_model_hook is True
trainer.fit(model)
assert trainer.accelerator.call_configure_sharded_model_hook is False
def test_configure_sharded_model_called_once(tmpdir):
"""Ensure ``configure_sharded_model`` is only called once"""
model = DummyModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
)
trainer.fit(model)
assert model.configure_sharded_model_called
model.configure_sharded_model_called = False
assert not model.configure_sharded_model_called