105 lines
3.7 KiB
Python
105 lines
3.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from unittest import mock
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.plugins.training_type import TPUSpawnPlugin
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers.boring_model import BoringModel, RandomDataset
|
|
from tests.helpers.dataloaders import CustomNotImplementedErrorDataloader
|
|
from tests.helpers.runif import RunIf
|
|
from tests.helpers.utils import pl_multi_process_test
|
|
|
|
|
|
class BoringModelNoDataloaders(BoringModel):
|
|
def train_dataloader(self):
|
|
raise NotImplementedError
|
|
|
|
def val_dataloader(self):
|
|
raise NotImplementedError
|
|
|
|
def test_dataloader(self):
|
|
raise NotImplementedError
|
|
|
|
def predict_dataloader(self):
|
|
raise NotImplementedError
|
|
|
|
|
|
_loader = DataLoader(RandomDataset(32, 64))
|
|
_loader_no_len = CustomNotImplementedErrorDataloader(_loader)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"train_dataloaders, val_dataloaders, test_dataloaders, predict_dataloaders",
|
|
[
|
|
(_loader_no_len, None, None, None),
|
|
(None, _loader_no_len, None, None),
|
|
(None, None, _loader_no_len, None),
|
|
(None, None, None, _loader_no_len),
|
|
(None, [_loader, _loader_no_len], None, None),
|
|
],
|
|
)
|
|
@mock.patch("pytorch_lightning.plugins.training_type.tpu_spawn.xm")
|
|
def test_error_iterable_dataloaders_passed_to_fit(
|
|
_, tmpdir, train_dataloaders, val_dataloaders, test_dataloaders, predict_dataloaders
|
|
):
|
|
"""Test that the TPUSpawnPlugin identifies dataloaders with iterable datasets and fails early."""
|
|
trainer = Trainer()
|
|
model = BoringModelNoDataloaders()
|
|
model.trainer = trainer
|
|
|
|
trainer.data_connector.attach_dataloaders(
|
|
model,
|
|
train_dataloaders=train_dataloaders,
|
|
val_dataloaders=val_dataloaders,
|
|
test_dataloaders=test_dataloaders,
|
|
predict_dataloaders=predict_dataloaders,
|
|
)
|
|
|
|
with pytest.raises(MisconfigurationException, match="TPUs do not currently support"):
|
|
TPUSpawnPlugin(MagicMock()).connect(model)
|
|
|
|
|
|
@mock.patch("pytorch_lightning.plugins.training_type.tpu_spawn.xm")
|
|
def test_error_process_iterable_dataloader(_):
|
|
with pytest.raises(MisconfigurationException, match="TPUs do not currently support"):
|
|
TPUSpawnPlugin(MagicMock()).process_dataloader(_loader_no_len)
|
|
|
|
|
|
class BoringModelTPU(BoringModel):
|
|
def on_train_start(self) -> None:
|
|
assert self.device == torch.device("xla")
|
|
assert os.environ.get("PT_XLA_DEBUG") == "1"
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_tpu_one_core():
|
|
"""Tests if device/debug flag is set correctely when training and after teardown for TPUSpawnPlugin."""
|
|
trainer = Trainer(tpu_cores=1, fast_dev_run=True, plugin=TPUSpawnPlugin(debug=True))
|
|
# assert training type plugin attributes for device setting
|
|
assert isinstance(trainer.training_type_plugin, TPUSpawnPlugin)
|
|
assert not trainer.training_type_plugin.on_gpu
|
|
assert trainer.training_type_plugin.on_tpu
|
|
assert trainer.training_type_plugin.root_device == torch.device("xla")
|
|
model = BoringModelTPU()
|
|
trainer.fit(model)
|
|
assert "PT_XLA_DEBUG" not in os.environ
|