lightning/pytorch_lightning/trainer/lr_finder.py

497 lines
17 KiB
Python
Executable File

"""
Trainer Learning Rate Finder
"""
import importlib
import os
from abc import ABC, abstractmethod
from typing import Optional, Sequence, Tuple, List, Union
import numpy as np
import torch
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
# check if ipywidgets is installed before importing tqdm.auto
# to ensure it won't fail and a progress bar is displayed
if importlib.util.find_spec('ipywidgets') is not None:
from tqdm.auto import tqdm
else:
from tqdm import tqdm
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.loggers.base import DummyLogger
from pytorch_lightning import _logger as log
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.parsing import lightning_hasattr, lightning_setattr
class TrainerLRFinderMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
default_root_dir: str
progress_bar_callback: ...
global_step: int
total_batch_idx: int
on_gpu: bool
@abstractmethod
def save_checkpoint(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def restore(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def init_optimizers(self, *args) -> Tuple[List, List, List]:
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def fit(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
def _run_lr_finder_internally(self, model: LightningModule):
""" Call lr finder internally during Trainer.fit() """
lr_finder = self.lr_find(model)
lr = lr_finder.suggestion()
# TODO: log lr.results to self.logger
if isinstance(self.auto_lr_find, str):
# Try to find requested field, may be nested
if lightning_hasattr(model, self.auto_lr_find):
lightning_setattr(model, self.auto_lr_find, lr)
else:
raise MisconfigurationException(
f'`auto_lr_find` was set to {self.auto_lr_find}, however'
' could not find this as a field in `model` or `model.hparams`.')
else:
if lightning_hasattr(model, 'lr'):
lightning_setattr(model, 'lr', lr)
elif lightning_hasattr(model, 'learning_rate'):
lightning_setattr(model, 'learning_rate', lr)
else:
raise MisconfigurationException(
'When auto_lr_find is set to True, expects that `model` or'
' `model.hparams` either has field `lr` or `learning_rate`'
' that can overridden')
log.info(f'Learning rate set to {lr}')
def lr_find(
self,
model: LightningModule,
train_dataloader: Optional[DataLoader] = None,
val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
min_lr: float = 1e-8,
max_lr: float = 1,
num_training: int = 100,
mode: str = 'exponential',
early_stop_threshold: float = 4.0,
):
r"""
lr_find enables the user to do a range test of good initial learning rates,
to reduce the amount of guesswork in picking a good starting learning rate.
Args:
model: Model to do range testing for
train_dataloader: A PyTorch
DataLoader with training samples. If the model has
a predefined train_dataloader method this will be skipped.
min_lr: minimum learning rate to investigate
max_lr: maximum learning rate to investigate
num_training: number of learning rates to test
mode: search strategy, either 'linear' or 'exponential'. If set to
'linear' the learning rate will be searched by linearly increasing
after each batch. If set to 'exponential', will increase learning
rate exponentially.
early_stop_threshold: threshold for stopping the search. If the
loss at any point is larger than early_stop_threshold*best_loss
then the search is stopped. To disable, set to None.
Example::
# Setup model and trainer
model = MyModelClass(hparams)
trainer = pl.Trainer()
# Run lr finder
lr_finder = trainer.lr_find(model, ...)
# Inspect results
fig = lr_finder.plot(); fig.show()
suggested_lr = lr_finder.suggestion()
# Overwrite lr and create new model
hparams.lr = suggested_lr
model = MyModelClass(hparams)
# Ready to train with new learning rate
trainer.fit(model)
"""
save_path = os.path.join(self.default_root_dir, 'lr_find_temp.ckpt')
self.__lr_finder_dump_params(model)
# Prevent going into infinite loop
self.auto_lr_find = False
# Initialize lr finder object (stores results)
lr_finder = _LRFinder(mode, min_lr, max_lr, num_training)
# Use special lr logger callback
self.callbacks = [_LRCallback(num_training,
early_stop_threshold,
progress_bar_refresh_rate=1)]
# No logging
self.logger = DummyLogger()
# Max step set to number of iterations
self.max_steps = num_training
# Disable standard progress bar for fit
if self.progress_bar_callback:
self.progress_bar_callback.disable()
# Disable standard checkpoint & early stopping
self.checkpoint_callback = False
self.early_stop_callback = None
# Required for saving the model
self.optimizers, self.schedulers = [], [],
self.model = model
# Dump model checkpoint
self.save_checkpoint(str(save_path))
# Configure optimizer and scheduler
optimizers, _, _ = self.init_optimizers(model)
if len(optimizers) != 1:
raise MisconfigurationException(
f'`model.configure_optimizers()` returned {len(optimizers)}, but'
' learning rate finder only works with single optimizer')
model.configure_optimizers = lr_finder._get_new_optimizer(optimizers[0])
# Fit, lr & loss logged in callback
self.fit(model,
train_dataloader=train_dataloader,
val_dataloaders=val_dataloaders)
# Prompt if we stopped early
if self.global_step != num_training:
log.info('LR finder stopped early due to diverging loss.')
# Transfer results from callback to lr finder object
lr_finder.results.update({'lr': self.callbacks[0].lrs,
'loss': self.callbacks[0].losses})
lr_finder._total_batch_idx = self.total_batch_idx # for debug purpose
# Reset model state
self.restore(str(save_path), on_gpu=self.on_gpu)
os.remove(save_path)
# Finish by resetting variables so trainer is ready to fit model
self.__lr_finder_restore_params(model)
if self.progress_bar_callback:
self.progress_bar_callback.enable()
return lr_finder
def __lr_finder_dump_params(self, model):
# Prevent going into infinite loop
self.__dumped_params = {
'auto_lr_find': self.auto_lr_find,
'callbacks': self.callbacks,
'logger': self.logger,
'max_steps': self.max_steps,
'checkpoint_callback': self.checkpoint_callback,
'early_stop_callback': self.early_stop_callback,
'configure_optimizers': model.configure_optimizers,
}
def __lr_finder_restore_params(self, model):
self.auto_lr_find = self.__dumped_params['auto_lr_find']
self.logger = self.__dumped_params['logger']
self.callbacks = self.__dumped_params['callbacks']
self.max_steps = self.__dumped_params['max_steps']
self.checkpoint_callback = self.__dumped_params['checkpoint_callback']
self.early_stop_callback = self.__dumped_params['early_stop_callback']
model.configure_optimizers = self.__dumped_params['configure_optimizers']
del self.__dumped_params
class _LRFinder(object):
""" LR finder object. This object stores the results of Trainer.lr_find().
Args:
mode: either `linear` or `exponential`, how to increase lr after each step
lr_min: lr to start search from
lr_max: lr to stop search
num_training: number of steps to take between lr_min and lr_max
Example::
# Run lr finder
lr_finder = trainer.lr_find(model)
# Results stored in
lr_finder.results
# Plot using
lr_finder.plot()
# Get suggestion
lr = lr_finder.suggestion()
"""
def __init__(self, mode: str, lr_min: float, lr_max: float, num_training: int):
assert mode in ('linear', 'exponential'), \
'mode should be either `linear` or `exponential`'
self.mode = mode
self.lr_min = lr_min
self.lr_max = lr_max
self.num_training = num_training
self.results = {}
self._total_batch_idx = 0 # for debug purpose
def _get_new_optimizer(self, optimizer: torch.optim.Optimizer):
""" Construct a new `configure_optimizers()` method, that has a optimizer
with initial lr set to lr_min and a scheduler that will either
linearly or exponentially increase the lr to lr_max in num_training steps.
Args:
optimizer: instance of `torch.optim.Optimizer`
"""
new_lrs = [self.lr_min] * len(optimizer.param_groups)
for param_group, new_lr in zip(optimizer.param_groups, new_lrs):
param_group["lr"] = new_lr
param_group["initial_lr"] = new_lr
args = (optimizer, self.lr_max, self.num_training)
scheduler = _LinearLR(*args) if self.mode == 'linear' else _ExponentialLR(*args)
def configure_optimizers():
return [optimizer], [{'scheduler': scheduler,
'interval': 'step'}]
return configure_optimizers
def plot(self, suggest: bool = False, show: bool = False):
""" Plot results from lr_find run
Args:
suggest: if True, will mark suggested lr to use with a red point
show: if True, will show figure
"""
import matplotlib.pyplot as plt
lrs = self.results["lr"]
losses = self.results["loss"]
fig, ax = plt.subplots()
# Plot loss as a function of the learning rate
ax.plot(lrs, losses)
if self.mode == 'exponential':
ax.set_xscale("log")
ax.set_xlabel("Learning rate")
ax.set_ylabel("Loss")
if suggest:
_ = self.suggestion()
if self._optimal_idx:
ax.plot(lrs[self._optimal_idx], losses[self._optimal_idx],
markersize=10, marker='o', color='red')
if show:
plt.show()
return fig
def suggestion(self, skip_begin: int = 10, skip_end: int = 1):
""" This will propose a suggestion for choice of initial learning rate
as the point with the steepest negative gradient.
Returns:
lr: suggested initial learning rate to use
skip_begin: how many samples to skip in the beginning. Prevent too naive estimates
skip_end: how many samples to skip in the end. Prevent too optimistic estimates
"""
try:
loss = np.array(self.results["loss"][skip_begin:-skip_end])
loss = loss[np.isfinite(loss)]
min_grad = np.gradient(loss).argmin()
self._optimal_idx = min_grad + skip_begin
return self.results["lr"][self._optimal_idx]
except Exception:
log.exception('Failed to compute suggesting for `lr`. There might not be enough points.')
self._optimal_idx = None
class _LRCallback(Callback):
""" Special callback used by the learning rate finder. This callbacks log
the learning rate before each batch and log the corresponding loss after
each batch.
Args:
num_training: number of iterations done by the learning rate finder
early_stop_threshold: threshold for stopping the search. If the
loss at any point is larger than ``early_stop_threshold*best_loss``
then the search is stopped. To disable, set to ``None``.
progress_bar_refresh_rate: rate to refresh the progress bar for
the learning rate finder
beta: smoothing value, the loss being logged is a running average of
loss values logged until now. ``beta`` controls the forget rate i.e.
if ``beta=0`` all past information is ignored.
"""
def __init__(self, num_training: int,
early_stop_threshold: float = 4.0,
progress_bar_refresh_rate: int = 0,
beta: float = 0.98):
self.num_training = num_training
self.early_stop_threshold = early_stop_threshold
self.beta = beta
self.losses = []
self.lrs = []
self.avg_loss = 0.0
self.best_loss = 0.0
self.progress_bar_refresh_rate = progress_bar_refresh_rate
self.progress_bar = None
def on_batch_start(self, trainer, pl_module):
""" Called before each training batch, logs the lr that will be used """
if (trainer.batch_idx + 1) % trainer.accumulate_grad_batches != 0:
return
if self.progress_bar_refresh_rate and self.progress_bar is None:
self.progress_bar = tqdm(desc='Finding best initial lr', total=self.num_training)
self.lrs.append(trainer.lr_schedulers[0]['scheduler'].lr[0])
def on_train_batch_end(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
""" Called when the training batch ends, logs the calculated loss """
if (trainer.batch_idx + 1) % trainer.accumulate_grad_batches != 0:
return
if self.progress_bar:
self.progress_bar.update()
current_loss = trainer.running_loss.last().item()
current_step = trainer.global_step + 1 # remove the +1 in 1.0
# Avg loss (loss with momentum) + smoothing
self.avg_loss = self.beta * self.avg_loss + (1 - self.beta) * current_loss
smoothed_loss = self.avg_loss / (1 - self.beta**current_step)
# Check if we diverging
if self.early_stop_threshold is not None:
if current_step > 1 and smoothed_loss > self.early_stop_threshold * self.best_loss:
trainer.max_steps = current_step # stop signal
if self.progress_bar:
self.progress_bar.close()
# Save best loss for diverging checking
if smoothed_loss < self.best_loss or current_step == 1:
self.best_loss = smoothed_loss
self.losses.append(smoothed_loss)
class _LinearLR(_LRScheduler):
"""Linearly increases the learning rate between two boundaries
over a number of iterations.
Arguments:
optimizer: wrapped optimizer.
end_lr: the final learning rate.
num_iter: the number of iterations over which the test occurs.
last_epoch: the index of last epoch. Default: -1.
"""
last_epoch: int
base_lrs: Sequence
def __init__(self,
optimizer: torch.optim.Optimizer,
end_lr: float,
num_iter: int,
last_epoch: int = -1):
self.end_lr = end_lr
self.num_iter = num_iter
super(_LinearLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
curr_iter = self.last_epoch + 1
r = curr_iter / self.num_iter
if self.last_epoch > 0:
val = [base_lr + r * (self.end_lr - base_lr) for base_lr in self.base_lrs]
else:
val = [base_lr for base_lr in self.base_lrs]
self._lr = val
return val
@property
def lr(self):
return self._lr
class _ExponentialLR(_LRScheduler):
"""Exponentially increases the learning rate between two boundaries
over a number of iterations.
Arguments:
optimizer: wrapped optimizer.
end_lr: the final learning rate.
num_iter: the number of iterations over which the test occurs.
last_epoch: the index of last epoch. Default: -1.
"""
last_epoch: int
base_lrs: Sequence
def __init__(self,
optimizer: torch.optim.Optimizer,
end_lr: float,
num_iter: int,
last_epoch: int = -1):
self.end_lr = end_lr
self.num_iter = num_iter
super(_ExponentialLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
curr_iter = self.last_epoch + 1
r = curr_iter / self.num_iter
if self.last_epoch > 0:
val = [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs]
else:
val = [base_lr for base_lr in self.base_lrs]
self._lr = val
return val
@property
def lr(self):
return self._lr