lightning/tests/trainer/test_lr_finder.py

176 lines
4.6 KiB
Python
Executable File

import pytest
import torch
import tests.base.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import (
LightTrainDataloader,
TestModelBase,
LightTestMultipleOptimizersWithSchedulingMixin,
)
def test_error_on_more_than_1_optimizer(tmpdir):
""" Check that error is thrown when more than 1 optimizer is passed """
class CurrentTestModel(
LightTestMultipleOptimizersWithSchedulingMixin,
LightTrainDataloader,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1
)
with pytest.raises(MisconfigurationException):
trainer.lr_find(model)
def test_model_reset_correctly(tmpdir):
""" Check that model weights are correctly reset after lr_find() """
class CurrentTestModel(
LightTrainDataloader,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1
)
before_state_dict = model.state_dict()
_ = trainer.lr_find(model, num_training=5)
after_state_dict = model.state_dict()
for key in before_state_dict.keys():
assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \
'Model was not reset correctly after learning rate finder'
def test_trainer_reset_correctly(tmpdir):
""" Check that all trainer parameters are reset correctly after lr_find() """
class CurrentTestModel(
LightTrainDataloader,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1
)
changed_attributes = ['callbacks', 'logger', 'max_steps', 'auto_lr_find',
'progress_bar_refresh_rate', 'early_stop_callback',
'accumulate_grad_batches', 'enable_early_stop',
'checkpoint_callback']
attributes_before = {}
for ca in changed_attributes:
attributes_before[ca] = getattr(trainer, ca)
_ = trainer.lr_find(model, num_training=5)
attributes_after = {}
for ca in changed_attributes:
attributes_after[ca] = getattr(trainer, ca)
for key in changed_attributes:
assert attributes_before[key] == attributes_after[key], \
f'Attribute {key} was not reset correctly after learning rate finder'
def test_trainer_arg_bool(tmpdir):
class CurrentTestModel(
LightTrainDataloader,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
before_lr = hparams.learning_rate
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1,
auto_lr_find=True
)
trainer.fit(model)
after_lr = model.hparams.learning_rate
assert before_lr != after_lr, \
'Learning rate was not altered after running learning rate finder'
def test_trainer_arg_str(tmpdir):
class CurrentTestModel(
LightTrainDataloader,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
hparams.__dict__['my_fancy_lr'] = 1.0 # update with non-standard field
model = CurrentTestModel(hparams)
before_lr = hparams.my_fancy_lr
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1,
auto_lr_find='my_fancy_lr'
)
trainer.fit(model)
after_lr = model.hparams.my_fancy_lr
assert before_lr != after_lr, \
'Learning rate was not altered after running learning rate finder'
def test_call_to_trainer_method(tmpdir):
class CurrentTestModel(
LightTrainDataloader,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
before_lr = hparams.learning_rate
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1,
)
lrfinder = trainer.lr_find(model, mode='linear')
after_lr = lrfinder.suggestion()
model.hparams.learning_rate = after_lr
trainer.fit(model)
assert before_lr != after_lr, \
'Learning rate was not altered after running learning rate finder'