lightning/tests/trainer/test_optimizers.py

243 lines
8.3 KiB
Python

import pytest
import torch
from pytorch_lightning import Trainer
from tests.base import EvalModelTemplate
def test_optimizer_with_scheduling(tmpdir):
""" Verify that learning rate scheduling is working """
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
model.configure_optimizers = model.configure_optimizers__single_scheduler
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
results = trainer.fit(model)
assert results == 1
init_lr = hparams.get('learning_rate')
adjusted_lr = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
assert len(trainer.lr_schedulers) == 1, \
'lr scheduler not initialized properly, it has %i elements instread of 1' % len(trainer.lr_schedulers)
assert all(a == adjusted_lr[0] for a in adjusted_lr), \
'Lr not equally adjusted for all param groups'
adjusted_lr = adjusted_lr[0]
assert init_lr * 0.1 == adjusted_lr, \
'Lr not adjusted correctly, expected %f but got %f' % (init_lr * 0.1, adjusted_lr)
def test_multi_optimizer_with_scheduling(tmpdir):
""" Verify that learning rate scheduling is working """
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
results = trainer.fit(model)
assert results == 1
init_lr = hparams.get('learning_rate')
adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups]
assert len(trainer.lr_schedulers) == 2, \
'all lr scheduler not initialized properly, it has %i elements instread of 1' % len(trainer.lr_schedulers)
assert all(a == adjusted_lr1[0] for a in adjusted_lr1), \
'Lr not equally adjusted for all param groups for optimizer 1'
adjusted_lr1 = adjusted_lr1[0]
assert all(a == adjusted_lr2[0] for a in adjusted_lr2), \
'Lr not equally adjusted for all param groups for optimizer 2'
adjusted_lr2 = adjusted_lr2[0]
assert init_lr * 0.1 == adjusted_lr1 and init_lr * 0.1 == adjusted_lr2, \
'Lr not adjusted correctly, expected %f but got %f' % (init_lr * 0.1, adjusted_lr1)
def test_multi_optimizer_with_scheduling_stepping(tmpdir):
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
results = trainer.fit(model)
assert results == 1
init_lr = hparams.get('learning_rate')
adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups]
assert len(trainer.lr_schedulers) == 2, \
'all lr scheduler not initialized properly'
assert all(a == adjusted_lr1[0] for a in adjusted_lr1), \
'lr not equally adjusted for all param groups for optimizer 1'
adjusted_lr1 = adjusted_lr1[0]
assert all(a == adjusted_lr2[0] for a in adjusted_lr2), \
'lr not equally adjusted for all param groups for optimizer 2'
adjusted_lr2 = adjusted_lr2[0]
# Called ones after end of epoch
assert init_lr * 0.1 ** 1 == adjusted_lr1, \
'lr for optimizer 1 not adjusted correctly'
# Called every 3 steps, meaning for 1 epoch of 11 batches, it is called 3 times
assert init_lr * 0.1 == adjusted_lr2, \
'lr for optimizer 2 not adjusted correctly'
def test_reduce_lr_on_plateau_scheduling(tmpdir):
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
model.configure_optimizers = model.configure_optimizers__reduce_lr_on_plateau
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
results = trainer.fit(model)
assert results == 1
assert trainer.lr_schedulers[0] == \
dict(scheduler=trainer.lr_schedulers[0]['scheduler'], monitor='val_loss',
interval='epoch', frequency=1, reduce_on_plateau=True), \
'lr schduler was not correctly converted to dict'
def test_optimizer_return_options():
trainer = Trainer()
model = EvalModelTemplate()
# single optimizer
opt_a = torch.optim.Adam(model.parameters(), lr=0.002)
opt_b = torch.optim.SGD(model.parameters(), lr=0.002)
scheduler_a = torch.optim.lr_scheduler.StepLR(opt_a, 10)
scheduler_b = torch.optim.lr_scheduler.StepLR(opt_b, 10)
# single optimizer
model.configure_optimizers = lambda: opt_a
optim, lr_sched, freq = trainer.init_optimizers(model)
assert len(optim) == 1 and len(lr_sched) == 0 and len(freq) == 0
# opt tuple
model.configure_optimizers = lambda: (opt_a, opt_b)
optim, lr_sched, freq = trainer.init_optimizers(model)
assert len(optim) == 2 and optim[0] == opt_a and optim[1] == opt_b
assert len(lr_sched) == 0 and len(freq) == 0
# opt list
model.configure_optimizers = lambda: [opt_a, opt_b]
optim, lr_sched, freq = trainer.init_optimizers(model)
assert len(optim) == 2 and optim[0] == opt_a and optim[1] == opt_b
assert len(lr_sched) == 0 and len(freq) == 0
# opt tuple of 2 lists
model.configure_optimizers = lambda: ([opt_a], [scheduler_a])
optim, lr_sched, freq = trainer.init_optimizers(model)
assert len(optim) == 1 and len(lr_sched) == 1 and len(freq) == 0
assert optim[0] == opt_a
assert lr_sched[0] == dict(scheduler=scheduler_a, interval='epoch',
frequency=1, reduce_on_plateau=False, monitor='val_loss')
# opt single dictionary
model.configure_optimizers = lambda: {"optimizer": opt_a, "lr_scheduler": scheduler_a}
optim, lr_sched, freq = trainer.init_optimizers(model)
assert len(optim) == 1 and len(lr_sched) == 1 and len(freq) == 0
assert optim[0] == opt_a
assert lr_sched[0] == dict(scheduler=scheduler_a, interval='epoch',
frequency=1, reduce_on_plateau=False, monitor='val_loss')
# opt multiple dictionaries with frequencies
model.configure_optimizers = lambda: (
{"optimizer": opt_a, "lr_scheduler": scheduler_a, "frequency": 1},
{"optimizer": opt_b, "lr_scheduler": scheduler_b, "frequency": 5},
)
optim, lr_sched, freq = trainer.init_optimizers(model)
assert len(optim) == 2 and len(lr_sched) == 2 and len(freq) == 2
assert optim[0] == opt_a
assert lr_sched[0] == dict(scheduler=scheduler_a, interval='epoch',
frequency=1, reduce_on_plateau=False, monitor='val_loss')
assert freq == [1, 5]
def test_none_optimizer_warning():
trainer = Trainer()
model = EvalModelTemplate()
model.configure_optimizers = lambda: None
with pytest.warns(UserWarning, match='will run with no optimizer'):
_, __, ___ = trainer.init_optimizers(model)
def test_none_optimizer(tmpdir):
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
model.configure_optimizers = model.configure_optimizers__empty
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
result = trainer.fit(model)
# verify training completed
assert result == 1
def test_configure_optimizer_from_dict(tmpdir):
"""Tests if `configure_optimizer` method could return a dictionary with `optimizer` field only."""
class CurrentModel(EvalModelTemplate):
def configure_optimizers(self):
config = {
'optimizer': torch.optim.SGD(params=self.parameters(), lr=1e-03)
}
return config
hparams = EvalModelTemplate.get_default_hparams()
model = CurrentModel(**hparams)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
)
result = trainer.fit(model)
assert result == 1