91 lines
4.5 KiB
Python
91 lines
4.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Test deprecated functionality which will be removed in v2.0.0."""
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
|
|
import pytorch_lightning
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.demos.boring_classes import BoringModel
|
|
from tests_pytorch.callbacks.test_callbacks import OldStatefulCallback
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
def test_v2_0_0_deprecated_num_processes():
|
|
with pytest.deprecated_call(match=r"is deprecated in v1.7 and will be removed in v2.0."):
|
|
_ = Trainer(num_processes=2)
|
|
|
|
|
|
@mock.patch("pytorch_lightning.utilities.device_parser.is_cuda_available", return_value=True)
|
|
@mock.patch("pytorch_lightning.utilities.device_parser.num_cuda_devices", return_value=2)
|
|
def test_v2_0_0_deprecated_gpus(*_):
|
|
with pytest.deprecated_call(match=r"is deprecated in v1.7 and will be removed in v2.0."):
|
|
_ = Trainer(gpus=0)
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
@mock.patch("pytorch_lightning.accelerators.tpu.TPUAccelerator.is_available", return_value=True)
|
|
@mock.patch("pytorch_lightning.accelerators.tpu.TPUAccelerator.parse_devices", return_value=8)
|
|
def test_v2_0_0_deprecated_tpu_cores(*_):
|
|
with pytest.deprecated_call(match=r"is deprecated in v1.7 and will be removed in v2.0."):
|
|
_ = Trainer(tpu_cores=8)
|
|
|
|
|
|
@mock.patch("pytorch_lightning.accelerators.ipu.IPUAccelerator.is_available", return_value=True)
|
|
def test_v2_0_0_deprecated_ipus(_, monkeypatch):
|
|
monkeypatch.setattr(pytorch_lightning.strategies.ipu, "_IPU_AVAILABLE", True)
|
|
with pytest.deprecated_call(match=r"is deprecated in v1.7 and will be removed in v2.0."):
|
|
_ = Trainer(ipus=4)
|
|
|
|
|
|
def test_v2_0_resume_from_checkpoint_trainer_constructor(tmpdir):
|
|
# test resume_from_checkpoint still works until v2.0 deprecation
|
|
model = BoringModel()
|
|
callback = OldStatefulCallback(state=111)
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, callbacks=[callback])
|
|
trainer.fit(model)
|
|
ckpt_path = trainer.checkpoint_callback.best_model_path
|
|
|
|
callback = OldStatefulCallback(state=222)
|
|
with pytest.deprecated_call(match=r"Setting `Trainer\(resume_from_checkpoint=\)` is deprecated in v1.5"):
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=2, callbacks=[callback], resume_from_checkpoint=ckpt_path)
|
|
with pytest.deprecated_call(match=r"trainer.resume_from_checkpoint` is deprecated in v1.5"):
|
|
_ = trainer.resume_from_checkpoint
|
|
assert trainer._checkpoint_connector.resume_checkpoint_path is None
|
|
assert trainer._checkpoint_connector.resume_from_checkpoint_fit_path == ckpt_path
|
|
trainer.validate(model=model, ckpt_path=ckpt_path)
|
|
assert callback.state == 222
|
|
assert trainer._checkpoint_connector.resume_checkpoint_path is None
|
|
assert trainer._checkpoint_connector.resume_from_checkpoint_fit_path == ckpt_path
|
|
with pytest.deprecated_call(match=r"trainer.resume_from_checkpoint` is deprecated in v1.5"):
|
|
trainer.fit(model)
|
|
ckpt_path = trainer.checkpoint_callback.best_model_path # last `fit` replaced the `best_model_path`
|
|
assert callback.state == 111
|
|
assert trainer._checkpoint_connector.resume_checkpoint_path is None
|
|
assert trainer._checkpoint_connector.resume_from_checkpoint_fit_path is None
|
|
trainer.predict(model=model, ckpt_path=ckpt_path)
|
|
assert trainer._checkpoint_connector.resume_checkpoint_path is None
|
|
assert trainer._checkpoint_connector.resume_from_checkpoint_fit_path is None
|
|
trainer.fit(model)
|
|
assert trainer._checkpoint_connector.resume_checkpoint_path is None
|
|
assert trainer._checkpoint_connector.resume_from_checkpoint_fit_path is None
|
|
|
|
# test fit(ckpt_path=) precedence over Trainer(resume_from_checkpoint=) path
|
|
model = BoringModel()
|
|
with pytest.deprecated_call(match=r"Setting `Trainer\(resume_from_checkpoint=\)` is deprecated in v1.5"):
|
|
trainer = Trainer(resume_from_checkpoint="trainer_arg_path")
|
|
with pytest.raises(FileNotFoundError, match="Checkpoint at fit_arg_ckpt_path not found. Aborting training."):
|
|
trainer.fit(model, ckpt_path="fit_arg_ckpt_path")
|