lightning/dockers
Jeff Yang 1d594c5d0c
[docker] Lock cuda version (#4453)
* lock cuda version

* back to normal
2020-10-31 20:17:07 +06:30
..
base-conda [docker] Lock cuda version (#4453) 2020-10-31 20:17:07 +06:30
base-cuda Drone: use nightly build cuda docker images (#3658) 2020-10-26 10:47:09 +00:00
base-xla PyTorch 1.7 Stable support (#3821) 2020-10-30 15:42:14 +00:00
release Drone: use nightly build cuda docker images (#3658) 2020-10-26 10:47:09 +00:00
tpu-tests Drone: use nightly build cuda docker images (#3658) 2020-10-26 10:47:09 +00:00
README.md Drone: use nightly build cuda docker images (#3658) 2020-10-26 10:47:09 +00:00

README.md

Docker images

Builds images form attached Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .

or with specific arguments

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.8 \
    -f dockers/conda/Dockerfile \
    --build-arg PYTHON_VERSION=3.8 \
    --build-arg PYTORCH_VERSION=1.4 \
    .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to you GPUs you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all so for example

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6